切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (03) : 213 -217. doi: 10.3877/cma.j.issn.1674-1358.2017.03.002

综述

内部核糖体进入位点与肠道病毒
倪雪菲1, 李兴旺1,()   
  1. 1. 100015 北京, 首都医科大学附属北京地坛医院感染病研究中心
  • 收稿日期:2016-01-21 出版日期:2017-06-15
  • 通信作者: 李兴旺

Relationship of internal ribosomal entry site (IRES) and enterovirus

Xuefei Ni1, Xingwang Li1,()   

  1. 1. Infectious Diseases Research Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2016-01-21 Published:2017-06-15
  • Corresponding author: Xingwang Li
引用本文:

倪雪菲, 李兴旺. 内部核糖体进入位点与肠道病毒[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(03): 213-217.

Xuefei Ni, Xingwang Li. Relationship of internal ribosomal entry site (IRES) and enterovirus[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2017, 11(03): 213-217.

人肠道病毒属于小RNA病毒科,为无包膜单股正链RNA病毒,两端为非编码区(UTR),中间仅有一个编码大分子多聚蛋白的开放阅读框。5'-UTR包含IRES结构,病毒感染宿主后,在关闭帽子依赖翻译的同时,可促进IRES介导的翻译从而有利于病毒的翻译,研究IRES与肠道病毒的关系对于抗病毒治疗至关重要。

Human enteroviruses belonging to Picornaviridae family are nonenveloped virus, which contain a single positive-stranded genomic RNA. The viral genome has 5'-untranslated region (5'-UTR), single open reading frame of encoding polyprotein precursor and 3'-untranslated region (3'-UTR). 5'-UTR RNA contains an internal ribosomal entry site (IRES). When virus infect host, the IRES-mediated initiation of translation enhance the translation of viral RNA, while at the same time host cell translation is shut off. Research on the relationship between IRES and enterovirus is vitally important to antiviral treatment.

图1 肠道病毒5'-UTRs结构模块示意图
表1 与肠道病毒IRES相互作用的RNA结合蛋白质
表2 肠道病毒蛋白酶水解细胞RNA结合蛋白
[1]
贾文祥主编. 医学微生物学[M]. 北京: 人民卫生出版社,2010:320-321.
[2]
Martinez-Salas E, Pacheco A, Serrano P, et al. New insights into internal ribosome entry site elements relevant for viral gene expression[J]. J Gen Virol,2008,89(Pt3):611-626.
[3]
Oberste MS, Maher K, Pallansch MA. Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae[J]. Virology,2003,314(1):283-293.
[4]
Oberste MS, Maher K, Pallansch MA. Complete genome sequences for nine simian enteroviruses[J]. J Gen Virol,2008,88 (Pt12):3360-3372.
[5]
Willimott S, Wagner S. Post-transcriptional control: mRNA translation, localization and turnover[J]. Biochem Soc Trans,2010,38(6):1581-1582.
[6]
Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs[J]. Nucleic Acids Res,1987,15(20):8125-8148.
[7]
Pestova TV, Kolupaeva VG, Lomakin IB, et al. Molecular mechanisms of translation initiation in eukaryotes[J]. Proc Natl Acad Sci USA,2001,98(13):7029-7036.
[8]
Sachs AB, Varani G. Eukaryotic translation initiation: there are (at least) two sides to every story[J]. Nat Struct Biol,2000,7(5):356-361.
[9]
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation[J]. Annu Rev Biochem,1999,68(1):913-963.
[10]
Nomoto A, Lee YF, Wimmer E. The 5' end of poliovirus mRNA is not capped with m7G(5')ppp(5')Np[J]. Proc Natl Acad Sci USA,1976,73(2):375-380.
[11]
Pilipenko EV, Blinov VM, Chernov BK, et al. Conservation of the secondary structure elements of the 5’-untranslated region of cardio- and aphthovirus RNAs[J]. Nucleic Acids Res,1989,17(14):5701-5711.
[12]
Etchison D, Milburn SC, Edery I, et al. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220 000-dalton polypeptide associated with eukaryotic initiation factor 3 and a cap binding protein complex[J]. J Biol Chem,1982,257(24):14806-14810.
[13]
Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA[J]. Nature,1988,334(6180):320-325.
[14]
Jang SK, Krausslich HG, Nicklin MJ, et al. A segment of the 5'-nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation[J]. J Virol,1988,62(8):2636-2643.
[15]
Tsukiyama-Kohara K, Iizuka N, Kohara M, et al. Internal ribosome entry site within hepatitis C virus RNA[J]. J Virol,1992,66(3):1476-1483.
[16]
Bieleski L, Talbot SJ. Kaposi’s sarcoma-associated herpesvirus Cyclin open reading frame contains an internal ribosome entry site[J]. J Virol,2001,75(4):1864-1869.
[17]
Anthony G, Coen DM. An unusual internal ribosome entry site in the herpes simplex virus thymidine kinase gene[J]. Proc Natl Acad Sci USA,2005,102(27):9667-9672.
[18]
Baird SD, Lewis SM, Marcel T, et al. A search for structurally similar cellular internal ribosome entry sites[J]. Nucleic Acids Res,2007,35(14):4664-4677.
[19]
Martin M, Vaclav V , Ondrej K, et al. IRESite: the database of experimentally verified IRES structures[J]. Nucleic Acids Res,2006, 34(Database issue):D125-D130.
[20]
Mardanova ES, Zamchuk LA, Skulachev MV, et al. The 5'-untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site[J]. Gene,2008,420(1):11-16.
[21]
Wong SM, Koh DC, Liu D. Identification of plant virus IRES[J]. Methods Mol Biol,2008,451(1):125-133.
[22]
Macejak DG, Sarnow P. Internal initiation of translation mediated by the 5'-leader of a cellular mRNA[J]. Nature,1991,353(6339):90-94.
[23]
Spriggs KA, Stoneley M, Bushell M, et al. Reprogramming of translation following cell stress allows IRES-mediated translation to predominate[J]. Biol Cell,2008,100(1):27-38.
[24]
Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, transacting factors and regulation of gene expression[J]. Oncogene,2004,23(23):3200-3207.
[25]
Bailey JM, Tapprich WE. Structure of the 5’nontranslated region of the coxsackievirus b3 genome: chemical modification and comparative sequence analysis[J]. J Virol,2007,81(2):650-668.
[26]
Zhihua D, Ulyanov NB, Jinghua Y, et al. NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA[J]. Biochemistry,2004,43(19):5757-5771.
[27]
Stephen G, Evgeny P, Kamal S, et al. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3[J]. J Virol,2004,78(20):11097-11107.
[28]
Evans DMA, Dunn G, Minor PD, et al. Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome[J]. Nature,1985,314(6011):548-550.
[29]
Sylvain DB, Yingpu Y, Anett U, et al. Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites[J]. Proc Natl Acad Sci USA,2009,106(23):9197-9202.
[30]
Dorner AJ, Semler BL, Jackson RJ, et al. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate[J]. J Virol,1984,50(2):507-514.
[31]
Fernandez-Miragall O, Lopezd QS, Martinez-Salas E. Relevance of RNA structure for the activity of picornavirus IRES elements[J]. Virus Res,2009,139(2):172-182.
[32]
Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation[J]. J EMBO,2007,26(2):459-467.
[33]
Blyn LB, Towner JS, Semler BL, et al. Requirement of poly(rC)binding protein 2 for translation of poliovirus RNA[J]. J Virol,1997,71(8):6243-6246.
[34]
Boussadia O, Niepmann M, Creancier L, et al. Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus[J]. J Virol,2003,77(6):3353-3359.
[35]
Hunt SL, Hsuan JJ, Totty N, et al. Unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA[J]. Genes Dev,1999,13(4):437-448.
[36]
Jang SK, Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein[J]. Genes Dev,1990,4:1560-1572.
[37]
Lin JY, Li ML, Shih SR. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation[J]. Nucleic Acids Res,2009,37(1):47-59.
[38]
Pacheco A, Lopez de Quinto S, Ramajo J, et al. A novel role for Gemin-5 in mRNA translation[J]. Nucleic Acids Res,2009,37(2):582-590.
[39]
Choi K, Kim JH, Li X, et al. Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides[J]. Nucleic Acids Res,2004,32(4):1308-1317.
[40]
Lin JY, Li ML, Huang PN, et al. Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5'untranslated region and participates in virus replication[J]. J Gen Virol,2008,89(10):2540-2549.
[41]
Gamarnik AV, Boddeker N, Andino R. Translation and replication of human rhinovirus type 14 and mengovirus in xenopus ocytes[J]. J Virol,2000,74(24):11983-11987.
[42]
Sean P, Nguyen BL, Semler JH. Altered interactions between stem-loopIV within the 5’noncoding region of coxsackievirus RNA and poly (rC) binding protein 2: effects on IRES-mediated translation and viral infectivity[J]. Virology,2009,389(S1-2):45-58.
[43]
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function[J]. Nat Rev Mol Cell Bio,2007,8(6):479-490.
[44]
Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation[J]. J EMBO,2007,26(2):459-467.
[45]
Waggoner S, Sarnow P. Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells[J]. J Virol,1998,72(8):6699-6709.
[46]
Kim YK, Jang SK. La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site[J]. J Gen Virol,2000,80(Pt12):3159-3166.
[47]
Huang PN, Lin JY, Locker N, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth[J]. Nucleic Acids Res,2011,39(22):9633-9648.
[48]
Jing-Yi L, Shin-Ru S, Manjing P, et al. hnRNP A1interacts with the 5' untranslated regions of enterovirus 71 and sindbis virus RNA and is required for viral replication[J]. J Virol,2009,83(12):6106-6114.
[49]
Jaqdeo JM, Dufour A, Gabriel F, et al. Heterogeneous nuclear ribonucleoprotein M facilitates enterovirus infection[J]. J Virol,2015,89(14):7064-7078.
[50]
Brunner JE, Ertel KJ, Rozovics JM, et al. Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins[J]. Virology,2010,400(2):240-247.
[51]
Merrill MK, Gromeier M. The double-stranded RNA binding protein 76: NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site[J]. J Virol,2006,80(14):6936-6942.
[52]
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections[J]. J Virol,2013,87(19):10423-10434.
[53]
Pineiro D, Fernandez N, Ramajo J, et al. Gemin 5 promotes IRES interaction and translation control through its C-terminal region[J]. Nucleic Acids Res,2013,41(2):1017-1028.
[54]
Back SH, Kim YK, Kim WJ, et al. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract binding proteins executed by polioviral 3C[J]. J Virol,2002,76(5):2529-2542.
[55]
Hanson PJ, Ye X, Qiu Y, et al. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes[J]. Cell Death Differ,2015,23(5):7559-7563.
[56]
Chen LL, Kung YA, Weng KF, et al. Enterovirus 71 infection cleaves a negative regulator for viral internal ribosomal entry site-driven translation[J]. J Virol,2013,87(7):3828-3838.
[57]
Brown MC, Bryant JD, Dobrikova EY, et al. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase[J]. J Virol,2014,88(22):13135-13148.
[58]
Brown MC, Dobrikov M, Gromeier M. Mitogen-activated protein kinase-interacting kinase eegulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated yranslation and viral oncolysis[J]. J Virol,2014,88(22):13149-13160.
[59]
Leong SY, Ong BK, Chu JJ. The role of misshapen NCK-related kinase (MINK), a novel ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71[J]. PLoS Pathog,2015,11(3):1-33.
[1] 黄胜贤, 罗杰平, 陈丽珍, 黄盼柳, 杨兰, 叶潇鸣, 郑利平. 热毒宁联合甘草酸苷对第2期手足口病患儿免疫相关指标的影响[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(05): 567-573.
[2] 林瀚妮, 房晓祎, 李管明, 张霭润, 李宁宁, 林霓阳. 新生儿重症监护病房住院新生儿粪便肠道病毒类型及感染临床特点[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 681-687.
[3] 吕莉娟, 李慧, 何薇, 段红丽, 尹爱华. 母体肠道菌群失调及其子宫内转移对母胎影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 116-120.
[4] 李东明, 林明, 黄冠新. 45 793例儿童手足口病临床特点分析[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(05): 545-551.
[5] 李莎, 张伟. 中医药治疗儿童手足口病的临床疗效[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(03): 354-357.
[6] 袁娟, 邓慧玲, 李亚萍, 吴媛, 李梅, 王军, 张玉凤, 党双锁. 雾化吸入重组人干扰素α1b治疗肠道病毒71型手足口病患儿的疗效[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(06): 478-484.
[7] 阎永红, 刘顺爱, 成军, 梁璞. 人肠道病毒71型感染及其防治研究进展[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(05): 366-369.
[8] 张玉凤, 符佳, 徐鹏飞, 刘瑞清, 王军, 邓慧玲. 手足口病并发多形红斑一例[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(05): 518-520.
[9] 高宁, 李梅, 李亚萍, 王文俊, 石娟娟, 贾晓黎, 党双锁. 肠道病毒71型衣壳蛋白VP1特异性识别和激活手足口病患儿CD4+ T细胞免疫活化[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(05): 427-433.
[10] 邹莉, 梅文静. EV71感染手足口病患儿T细胞亚群表达[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(04): 397-401.
[11] 梁璞, 刘婷, 刘顺爱, 庞琳, 芦红萍, 闫永红, 韩铭, 袁晓雪, 韩凯, 杨松, 成军. 2016年度首都医科大学附属北京地坛医院手足口病患者病原学及临床特征分析[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(06): 533-538.
[12] 王军, 邓慧玲, 袁娟, 张玉凤, 李亚萍, 李梅, 王文俊, 高宁, 党双锁. 淋巴细胞亚群失衡与EV71型手足口病重症化的相关性[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(02): 156-161.
[13] 刘婷, 芦红萍, 庞琳, 孟一星, 曹金凤, 闫永红, 韩铭, 刘顺爱, 成军. 2013至2015年度某院手足口病患儿的病原学分析[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(06): 663-668.
[14] 朱名超, 朱娅, 韩利蓉, 孙莉. 天门地区2014年手足口病病原学检测[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(03): 342-345.
[15] 谢曼芬, 高燕, 蔡晨露, 王肖, 郭会敏. 静注人免疫球蛋白对EV71型感染重症手足口病患儿炎症因子、免疫功能的影响[J]. 中华临床医师杂志(电子版), 2022, 16(02): 136-140.
阅读次数
全文


摘要