切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2016, Vol. 10 ›› Issue (02) : 166 -172. doi: 10.3877/cma.j.issn.1674-1358.2016.02.008

临床论著

获得性免疫缺陷综合征合并结核病患者对结核分枝杆菌二线药物耐药特征分析
张玲1, 孙月2, 陈勇3, 郜桂菊4, 杨思园1, 万康林5, 李兴旺1,()   
  1. 1. 100015 北京,北京大学地坛医院教学医院
    2. 100016 北京,清华大学第一附属医院
    3. 100015 北京,首都医科大学附属北京地坛医院;075000 张家口市,河北北方学院附属第一医院
    4. 100015 北京,首都医科大学附属北京地坛医院
    5. 102206 北京,中国疾病预防控制中心传染病预防控制所传染病预防控制国家重点实验室
  • 收稿日期:2015-04-27 出版日期:2016-04-15
  • 通信作者: 李兴旺
  • 基金资助:
    国家十二五科技重大专项中医药防治重大传染病临床科研基地与技术平台建设(No. 2012ZX10005010-003)

The second-line drug resistance characterization of Mycobacterium tuberculosis in patients with acquired immune deficiency syndrome and tuberculosis

Ling Zhang1, Yue Sun2, Yong Chen3, Guiju Gao4, Siyuan Yang1, Kanglin Wan5, Xingwang Li1,()   

  1. 1. Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing 100015, China
    2. First Hospital of Tsinghua University, Beijing 100016, China
    3. Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
    4. Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    5. National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Diseases Prevention and Control/National Reference Laboratory of Tuberculosis, Beijing 102206, China
  • Received:2015-04-27 Published:2016-04-15
  • Corresponding author: Xingwang Li
引用本文:

张玲, 孙月, 陈勇, 郜桂菊, 杨思园, 万康林, 李兴旺. 获得性免疫缺陷综合征合并结核病患者对结核分枝杆菌二线药物耐药特征分析[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(02): 166-172.

Ling Zhang, Yue Sun, Yong Chen, Guiju Gao, Siyuan Yang, Kanglin Wan, Xingwang Li. The second-line drug resistance characterization of Mycobacterium tuberculosis in patients with acquired immune deficiency syndrome and tuberculosis[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2016, 10(02): 166-172.

目的

了解获得性免疫缺陷综合征(AIDS)合并结核病(TB)患者感染结核分枝杆菌二线药物耐药特点。

方法

选取2010年4月至2012年10月于北京大学地坛医院教学医院住院的艾滋病合并结核病患者标本,由中国疾病预防控制中心培养鉴定。进行4种一线药物(异烟肼、利福平、链霉素、乙胺丁醇)和4种二线药物(卷曲霉素、卡那霉素、氧氟沙星、乙硫异烟胺)药敏试验监测,并对所有菌株在gyrA、gyrB、rrs、tlya、eis和ethA基因位点进行DNA测序以检测基因多态性。

结果

经培养鉴定共得到31株结核分枝杆菌,其中12株耐卷曲霉素,8株耐氧氟沙星,4株耐卡那霉素,5株耐乙硫异烟胺,耐药率分别为38.71%、25.81%、12.90%和16.13%。7株菌为耐多药菌株,1株菌为广泛耐药菌株,耐药率分别为22.58%和3.23%。耐药菌株最常见的突变位点是rrs1401,gyrA94和gyrA90。一线敏感菌株中氧氟沙星的耐药率显著低于一线耐药菌株(P = 0.012)。性别与结核分枝杆菌耐药差异无统计学意义(P = 0.533),年龄> 40岁组的氧氟沙星耐药率低于其余两组(P = 0.043)。结核初治组与复治组患者二线耐药率、CD4水平差异无统计学意义(P = 0.333、0.307)。

结论

AIDS合并TB患者存在二线抗结核药物原发耐药,其中卷曲霉素耐药率最高,其次是氧氟沙星。

Objective

To explore the second-line drug resistance and molecular characterization of Mycobacterium tuberculosis in patients with acquired immune deficiency syndrome (AIDS) and tuberculosis (TB).

Methods

Specimens of patients with AIDS and TB, hospitalized in Beijing Ditan Hospital, Peking University Teaching Hospital from April 2010 to Octomber 2012, were collected and sent to CDC for identification. Four first-line drugs (isoniazid, rifampicin, streptomycin and ethambutol) and four second-line drugs (capreomycin, kanamycin, ofloxacin and ethionamide) susceptibility tests were taken and gyrA, gyrB, rrs, tlya, eis, ethA loci were detected for genetic polymorphisms.

Results

Total of 31 Mycobacterium tuberculosis strains were identified, while 12 isolates showed resistance to capreomycin, 8 strains resistance to ofloxacin, 4 strains resistance to kanamycin and 5 strains resistance to ethionamide. The drug resistance rates were 38.71%, 25.81%, 12.90% and 16.13%, respectively. Besides, 7 multidrug-resistant isolates and one extensively drug-resistant isolate were identified and the drug resistance rates were 22.58% and 3.23%, respectively. The most frequent mutation loci were rrs1401, gyrA94 and gyrA90. Ofloxacin drug resistance rate was significantly higher in isolates resistant to first-line drugs than first-line drugs sensitive isolates (P = 0.012). Gender was not associated with drug resistance (P = 0.533). Ofloxacin drug resistance rate was significantly lower in > 40 years old group than the other two groups (P = 0.043). There was no drug resistance and CD4 level difference between initial treated group and retreated group (P = 0.333, 0.307).

Conclusions

There existed primary drug resistance of second-line anti-tuberculosis drugs in patients with AIDS and TB. Capreomycin drug resistance rate was the highest followed by ofloxacin.

表1 多位点PCR引物序列(擎科生物公司合成)
表2 本研究检测基因突变所用的引物(擎科生物公司合成)
表3 31例AIDS-TB患者病原学分布
表4 31株结核分枝杆菌二线药物耐药特点
表5 不同一线耐药模式下二线药物耐药比较[例(%)]
表6 二线耐药相关的人口统计学和临床特点
表7 二线药物耐药的基因特征
[1]
Kawai V, Soto G, Gilman RH, et al. Tuberculosis mortality, drug resistance, and infectiousness in patients with and without HIV infection in Peru[J]. Am J Trop Med Hyg,2006,75(6):1027-1033.
[2]
Pereira M, Tripathy S, Inamdar V, et al. Drug resistance pattern of Mycobacterium tuberculosis in seropositive and seronegative HIV-TB patients in Pune, India[J]. Indian J Med Res,2005,121(4):235-239.
[3]
Gao GJ, Lian LL, Sun Y, et al. Drug resistance characteristics of Mycobacterium tuberculosis isolates to four first-line antituberculous drugs from tuberculosis patients with AIDS in Beijing, China[J]. Int J Antimicrob Agents,2015,45(2):124-129.
[4]
Huard RC, de Oliveira Lazzarini LC, Butler WR, et al. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions[J]. J Clin Microbiol,2003,41(4):1637-1650.
[5]
WHO. Policy Guidance on TB drug susceptibility testing (DST) of second-line drugs[J]. WHO, Geneva. WHO/HTM/TB/2008392. 2008.
[6]
Morlock GP, Metchock B, Sikes D, et al. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates[J]. Antimicrob Agents Chemother,2003,47(12):3799-3805.
[7]
熊建菁,赵根明,顾元祥. 结核病与艾滋病病毒感染的相互影响[J]. 中国性病艾滋病防治,2002,8(4):251-253.
[8]
Wang JY, Lee LN, Lai HC, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure[J]. J Antimicrob Chemother,2007,59(5):860-865.
[9]
Hu Y, Hoffner S, Wu L, et al. Prevalence and genetic characterization of second-line drug-resistant and extensively drug-resistant Mycobacterium tuberculosis in Rural China[J]. Antimicrob Agents Chemother,2013,57(8):3857-3863.
[10]
Sowajassatakul A, Prammananan T, Chaiprasert A, et al. Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand[J]. BMC Microbiol,2014,14:165.
[11]
Sreevatsan, S, Pan X, Stockbauer KE, et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination[J]. Proc Natl Acad Sci USA,1997,94(18):9869-9874.
[12]
Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2011,55(5):2032-2041.
[13]
Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2005,49(8):3192-3197.
[14]
Du Q, Dai G, Long Q, et al. Mycobacterium tuberculosis rrs A1401G mutation correlates with high-level resistance to kanamycin, amikacin, and capreomycin in clinical isolates from mainland China[J]. Diagn Microbiol Infect Dis,2013,77(2):138-142.
[15]
Jugheli L, Bzekalava N, de Rijk P, et al. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene[J]. Antimicrob Agents Chemother,2009,53(12):5064-5068.
[16]
Zaunbrecher MA, Sikes RD, Metchock B, et al. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis[J]. Proc Natl Acad Sci USA,2009,106(47):20004-20009.
[17]
Antonova OV, Gryadunov DA, Lapa SA, et al. Detection of mutations in Mycobacterium tuberculosis genome determining resistance to fluoroquinolones by hybridization on biological microchips[J]. Bull Exp Biol Med,2008,145(1):108-113.
[18]
Mokrousov I, Otten T, Manicheva O, et al. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia[J]. Antimicrob Agents Chemother,2008,52(8):2937-2939.
[19]
Von Groll A, Martin A, Jureen P, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB[J]. Antimicrob Agents Chemother,2009,53(10):4498-4500.
[20]
Almeida DSP, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs[J]. J Antimicrob Chemother,2011,66(7): 1417-1430.
[21]
Feuerriegel S, Cox HS, Zarkua N, et al. Sequence analyses of just four genes to detect extensively drug-resistant Mycobacterium tuberculosis strains in multidrug-resistant tuberculosis patients undergoing treatment[J]. Antimicrob Agents Chemother,2009,53(8):3353-3356.
[22]
Yuan X, Zhang T, Kawakami K, et al. Molecular characterization of multidrug- and extensively drug-resistant Mycobacterium tuberculosis strains in Jiangxi, China[J]. J Clin Microbiol,2012,50(7):2404-2413.
[23]
Poudel A, Nakajima C, Fukushima Y, et al. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolated in Nepal[J]. Antimicrob Agents Chemother,2012,56(6):2831-2836.
[24]
Bonecini-Almeida MG, Werneck-Barroso E, Carvalho PB, et al. Functional activity of alveolar and peripheral cells in patients with human acquired immunodeficiency syndrome and pulmonary tuberculosis[J]. Cell Immunol,1998,190(2):112-120.
[25]
Wanchu A, Kuttiatt VS, Sharma A, et al. CD4 cell count recovery in HIV/TB co-infected patients versus TB uninfected HIV patients[J]. Indian J Pathol Microbiol,2010,53(4):745-749.
[26]
Zhao LL, Chen Y, Chen ZN, et al. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hunan, China[J]. Antimicrob Agents Chemother,2014,58(6):3475-3480.
[27]
Zhao M, Li X, Xu P, et al. Transmission of MDR and XDR tuberculosis in Shanghai, China[J]. PLoS One,2009,4(2):e4370.
[28]
Li X, Wang H, Jing H, et al. Population-based surveillance of extensively drug-resistant tuberculosis in Shandong Province, China[J]. Int J Tuberc Lung Dis,2012,16(5):612-614.
[29]
Toungoussova OS, Mariandyshev AO, Bjune G, et al. Resistance of multidrug-resistant strains of Mycobacterium tuberculosis from the Archangel oblast, Russia, to second-line anti-tuberculosis drugs[J]. Eur J Clin Microbiol Infect Dis,2005,24(3):202-206.
[30]
张国龙,杜长梅,苍泽卓也, 等. 中日合作对河南省结核菌二线药物耐药监测研究[J]. 医药论坛杂志,2005,26(19):14-16.
[31]
Zhao LL, Chen Y, Liu HC, et al. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from China[J]. Antimicrob Agents Chemother,2014,58(4):1997-2005.
[32]
Umubyeyi A, Riqouts L, Shamputa IC, et al. Low levels of second-line drug resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Rwanda[J]. Int J Infect Dis,2008,12(2):152-156.
[33]
赵冰,宋媛媛,逄宇, 等. 中国耐多药结核分枝杆菌二线抗结核药物敏感性分析[J]. 中国防痨杂志,2013,35(10):831-834.
[34]
刘茜,冯福民,王东, 等. 唐山地区耐药结核分枝杆菌广泛耐药情况的调查[J]. 现代预防医学,2007,34(24):4728-4729.
[35]
沈鑫,李静,高谦, 等. 2009年上海市耐药肺结核患者二线抗结核药物耐药状况调查[J]. 中华结核和呼吸杂志,2011,34(6):451-453.
[1] 李春静, 张明帅, 彭卫, 付晓莹, 刘雪珍, 曹春燕, 任雅坤, 李洪娟, 赖丽思, 郑维. 巨大乳腺癌伴人免疫缺陷病毒感染一例[J]. 中华乳腺病杂志(电子版), 2022, 16(05): 319-321.
[2] 吴令杰, 陈瑞烈, 陈桂佳, 肖湘明, 林钟滨. 两例获得性免疫缺陷综合征合并新型冠状病毒感染者抗病毒治疗并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 282-286.
[3] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[4] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[5] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[6] 王彤彤, 朱春雨, 刘颖楚, 郜桂菊. 复方磺胺甲噁唑治疗获得性免疫缺陷综合征合并肺孢子菌肺炎现状及其肝功能损伤机制[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 79-83.
[7] 王延雪, 胡虹英, 李新刚, 鹿星梦. 获得性免疫缺陷综合征患者免疫重建炎症综合征相关Graves’病5例并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 65-70.
[8] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[9] 马亚楠, 侍效春, 刘晓清. 系统性红斑狼疮合并活动性结核病研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 1-5.
[10] 董愉, 柳月红, 许雪静, 刘彬彬. 免散瞳超广角激光扫描检眼镜在获得性免疫缺陷综合征患者眼底病筛查中的优势[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 344-347.
[11] 魏春波, 万钢, 许东梅, 赵兴云, 袁柳凤, 吴焱, 伦文辉. 60例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征合并神经梅毒患者临床和实验室特征[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 254-260.
[12] 田飞, 高颂, 李铮, 王颖慧, 王媛媛. 1989至2020年北京市东城区1 076例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者生存时间及影响因素[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(02): 100-107.
[13] 李玉娟, 潘蕾, 鱼高乐, 代川川, 南岩东, 金发光. 获得性免疫缺陷综合征并发卡氏肺孢子菌肺炎一例报告[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 600-602.
[14] 万秋, 唐莉歆. 获得性免疫缺陷综合征合并慢性阻塞性肺疾病的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 129-131.
[15] 樊茹, 刘红伟, 邱万, 李晓非. I-SPOT.TB与T-SPOT.TB试剂盒在结核病诊断中的应用价值及其诊断一致性分析[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 210-214.
阅读次数
全文


摘要