切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 125 -132. doi: 10.3877/cma.j.issn.1674-1358.2023.02.008

论著

壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用
朱晓红, 周诗梦, 朱晓霞, 邹美银()   
  1. 226006 南通市,南通大学附属南通第三医院感染二科
    226019 南通市,南通大学公共卫生学院
  • 收稿日期:2022-09-23 出版日期:2023-04-15
  • 通信作者: 邹美银
  • 基金资助:
    南通市市级科技计划项目(No. MSZ20172); 南通市卫生健康委员会科研立项课题(No. MA2019007)

Application of chitosan-modified poly (lactic-co-glycolic acid) polymericnano carriers on anti-human immuno-deficiency virus drug encapsulation

Xiaohong Zhu, Shimeng Zhou, Xiaoxia Zhu, Meiyin Zou()   

  1. Infection Department of Nantong Third Hospital Affiliated to Nantong University, Nantong 226000, China
    School of Public Health, Nantong University, Nantong 226007, China
  • Received:2022-09-23 Published:2023-04-15
  • Corresponding author: Meiyin Zou
引用本文:

朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.

Xiaohong Zhu, Shimeng Zhou, Xiaoxia Zhu, Meiyin Zou. Application of chitosan-modified poly (lactic-co-glycolic acid) polymericnano carriers on anti-human immuno-deficiency virus drug encapsulation[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(02): 125-132.

目的

开发抗人类免疫缺陷病毒(HIV)纳米药物递送系统和释放方式,改善抗HIV药物的生物利用度,并减少不良反应。

方法

通过水油水乳化和蒸发技术,抗病毒药物依非韦伦、替诺福韦酯和拉米夫定(重量比2︰1︰1)与聚乳酸-羟基乙酸共聚物(PLGA)及壳聚糖混合制备PLGA和聚乳酸-羟基乙酸共聚物-壳聚糖(PLGA-CS)载药纳米颗粒。PLGA和PLGA-CS载药纳米颗粒的粒径、多分散性分布指数和ζ-电位等进行表征,应用高效液相色谱(HPLC)探讨PLGA和PLGA-CS药物载量、包封率和药物释放,体外细胞试验分析生物相容性和细胞毒性。

结果

PLGA-CS和PLGA颗粒粒径均一性好,经CS修饰PLGA-CS粒径由(198.2 ± 2.3)nm增加至(219.8 ± 6.5)nm,且与扫描电子显微镜(SEM)结果一致。经CS修饰后ζ-电位由(-25 ± 1.6)mV增加至(23.5 ± 1.9)mV。抗病毒药物包封效率由49%~52%增加至68%~77%。4 ℃和25 ℃下存储2个月PLGA-CS纳米颗粒药物保持量均> 90%,提示PLGA-CS载药纳米颗粒稳定性好。PLGA-CS初始暴发性释放减少,24 h内释放不足20%,与PLGA相比PLGA-CS的释放更长久。MTT实验发现,与PLGA-CS共培养的细胞活力均> 91.2%,且不依赖纳米颗粒浓度,提示PLGA-CS细胞毒性低生物相容性高。

结论

PLGA-CS对抗HIV药物封装率高、稳定性好、无毒,且具有持续释放药物和增强药物疗效的优点,这为HIV感染者临床给药提供了一种新思路。

Objective

To develop a new nano-drug delivery system, to improve bioavailability and reduce adverse effect of antiretroviral drugs for human immunodeficiency virus (HIV).

Methods

Nano-drug delivery system produced by awater-oil-water emulsion and solvent evaporation technique was prepared by mixing anti-viral drug: efavirenz (EFV), tenofovir (TDF) and lamivudine (LAM) (weight ratio of 2︰1︰1) with poly (lactic-co-glycolic acid) (PLGA) and PLGA-chitosan (PLGA-CS). The drug-loaded nanoparticles were characterized for their particle size, poly-dispersity index and ζ-potential. The drug loading, encapsulation efficiency and drug release of PLGA and PLGA-CS nanoparticles were analyzed by high-performance liquid chromatography (HPLC). In vitro, cell viability was performed to evaluate biocompatibility and cytotoxicity.

Results

Both PLGA-CS and PLGA nanoparticles exhibit good uniformity in particle size. Due to be coated with CS, the particle size of PLGA-CS nanoparticle was increased from (198.2 ± 2.3) nm to (219.8 ± 6.5) nm; the ζ-potential was increased from (-25.0 ± 1.6) mV to (23.5 ± 1.9) mV; drug encapsulation efficiency was increased from 49%-52% to 68%-77%. After a 2-month storage at 4 ℃ or 25 ℃, the drug retention of PLGA-CS nanoparticles remained above 90%. These results confirmed the excellent stability of PLGA-CS nanoparticles. The initial burst release of the antiretroviral drug from PLGA-CS nanoparticles exhibited a significant reduction, with the drug release remaining below 20% within 24 hours. The results in vitro studies pointed to the prolonged antiviral activity of AR-PLGA-CS. The stability of PLGA-CS was better than PLGA. Regardless of the concentration of PLGA-CS nanoparticles, the MTT assay showed that the cell viability was higher than 90%. This result indicated that PLGA-CS nanoparticles have low toxicity and excellent biocompatibility.

Conclusions

PLGA-CS nanoparticles exhibited high drug encapsulation efficiency, excellent stability, and the capacity of sustained drug release and enhanced therapeutic efficacy. This provides a new way for the clinical administration of antiretroviral drugs to patients with HIV infection.

图1 纳米载药颗粒的SEM图注:A:PLGA,B:PLGA-CS
表1 纳米颗粒的平均粒径、多分散性指数和ζ-电位(± s
图2 纳米颗粒的载药率和封装率
图3 载药纳米颗粒不同存储条件下药物保持量
图4 载药纳米颗粒体外释放情况注:A:4 ℃,B:37 ℃
图5 纳米颗粒对BSA的吸附
图6 纳米颗粒对红细胞的影响
图7 纳米颗粒对TZM-B1的细胞毒性
[1]
World Health Organization. HIV/AIDS[EB/OL]. Accessed [2021-09-05].

URL    
[2]
中华医学会感染病学分会艾滋病丙型肝炎学组, 中国疾病预防控制中心. 中国艾滋病诊疗指南(2022年版)[J]. 中国艾滋病性病,2021,27(11):1182-1201.
[3]
王健, 李博. 高效联合抗反转录病毒治疗对艾滋病患者生存质量的影响[J/CD]. 中西医结合心血管病杂志(电子版),2017,5(33):171.
[4]
Capoferri AA, Bale M, Simonetti FR, et al. Phylogenetic inference for the study of within-host HIV-1 dynamics and persistence on antiretroviral therapy[J]. Lancet HIV,2019,6(5):e325-e333
[5]
Perazzolo S, Shireman LM, Koehn J, et al. Three HIV drugs, atazanavir, ritonavir, and tenofovir, co-formulated in drug-combination nanoparticles exhibit long-acting and lymphocyte-targeting properties in nonhuman primates[J]. J Pharm Sci,2018,107(2):3153-3162.
[6]
Savage AC, Tatham LM, Siccardi M, et al. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles[J]. Eur J Pharm Biopharm,2019,138:30-36.
[7]
Hobson JJ, Al-khouja A, Curley P, et al. Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies[J]. Nat Commun, 2019,1413(10):1-10.
[8]
Nabi B, Rehman S, Baboota S, et al. Insights on oral drug delivery of lipid nanocarriers: a win-win solution for augmenting bioavailability of antiretroviral[J]. AAPS Pharm Sci Tech,2019,20:60.
[9]
Walvekar P, Gannimani R, Govender T. Combination drug therapy via nanocarriers against infectious diseases[J]. Eur J Pharm Sci,2019,127:121-141.
[10]
Prabhuraj R, Kartik B, Rohit S, et al. Dual drug delivery of curcumin and niclosamide using PLGA nanoparticles for improved therapeutic effect on breast cancer cells[J]. J Polym Res,2020,27:133.
[11]
Arafa MG, MousaHA, Afifi NN. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection [J]. Drug Deliv,2020,27(1):26-39.
[12]
Bienvenu E, Hoffmann KJ, Ashton M, et al. A rapid and selective HPLC-UV method for the quantitation of efavirenz in plasma from patients on concurrent HIV/AIDS and tuberculosis treatments[J]. Biomed Chromatogr,2013,27(11):1554-1559.
[13]
Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, et al. pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment[J]. Carbohydrate Polymer, 2021,262(1):117907-117920.
[14]
Yu L, Xu M, Xu W, et al. Enhanced cancer-targeted drug delivery using precoated nanoparticles[J]. Nano Lett,2020,20(12):8903-8911.
[15]
Mushtaq I, Akhter Z, Farooq M, et al. A unique amphiphilic triblock copolymer, nontoxic to human blood and potential supramolecular drug delivery system for dexamethasone[J]. Sci Report,2021,11(1):1-14.
[16]
黄振华. 负载姜黄素的海藻酸酯纳米粒的制备,表征及功能评价[D]. 中国海洋大学,2012.
[17]
Chiesa E, Greco A, Riva F, et al. Hyaluronic acid-based nanoparticles for protein delivery: systematic examination of microfluidic production conditions[J]. Pharmaceutics,2021,13(10):1565-1563.
[18]
Mulubwa M, Rheeders M, Du Plessis L, et al. Development and validation of high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for determination of tenofovir in small volumes of human plasma[J]. J Chromatogr Separ Tech,2015,6(7):1-9.
[19]
Safari M, Shamsipur M, Zohrabi P, et al. Solid-phase extraction combined with dispersive liquid-liquid microextraction/HPLC-UV as a sensitive and efficient method for extraction, pre-concentration and simultaneous determination of antiretroviral drugs nevirapine, efavirenz and nelfinavir in pharmaceutical formulations and biological samples[J]. J Pharm Biomed Anal,2019,166(1):95-104.
[20]
Alebouyeh M, Amini H. Rapid determination of lamivudine in human plasma by high-performance liquid chromatography[J]. J Chromatogr B,2015,975:40-44.
[21]
Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery[J]. Aaps Pharmscitech, 2013,14(2):585-592.
[22]
Martinez LA, Menezes RJP, Mendes NJ. Efavirenz-loaded polymeric nanocapsules: formulation, development, and validation of an RP-UHPLC-DAD method for drug quantification, determination of encapsulation efficiency, stability study, and dissolution profile[J]. J Appl Pharm Sci,2020,11(2):93-101.
[23]
吴加周. 有缓释作用的巯基壳聚糖纳米载体的缓释效果的研究[D]. 北京工业大学,2019.
[24]
Mahajan K, Rojekar S, Desai D, et al. Efavirenz loaded nanostructured lipid carriers for efficient and prolonged viral inhibition in HIV-infected macrophages[J]. Pharm Sci,2020,27(3):418-432.
[25]
Rotem R, Micale A, Rizzuto MA, et al. Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems[J]. Colloid Surface B,2020,196:111366-111343.
[26]
Herdiana Y, Wathoni N, Shamsuddin S, et al. Drug release study of the chitosan-based nanoparticles[J]. Heliyon,2021:e08674.
[1] 李春静, 张明帅, 彭卫, 付晓莹, 刘雪珍, 曹春燕, 任雅坤, 李洪娟, 赖丽思, 郑维. 巨大乳腺癌伴人免疫缺陷病毒感染一例[J]. 中华乳腺病杂志(电子版), 2022, 16(05): 319-321.
[2] 吴令杰, 陈瑞烈, 陈桂佳, 肖湘明, 林钟滨. 两例获得性免疫缺陷综合征合并新型冠状病毒感染者抗病毒治疗并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 282-286.
[3] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[4] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[5] 王彤彤, 朱春雨, 刘颖楚, 郜桂菊. 复方磺胺甲噁唑治疗获得性免疫缺陷综合征合并肺孢子菌肺炎现状及其肝功能损伤机制[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 79-83.
[6] 王延雪, 胡虹英, 李新刚, 鹿星梦. 获得性免疫缺陷综合征患者免疫重建炎症综合征相关Graves’病5例并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 65-70.
[7] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[8] 董愉, 柳月红, 许雪静, 刘彬彬. 免散瞳超广角激光扫描检眼镜在获得性免疫缺陷综合征患者眼底病筛查中的优势[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 344-347.
[9] 魏春波, 万钢, 许东梅, 赵兴云, 袁柳凤, 吴焱, 伦文辉. 60例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征合并神经梅毒患者临床和实验室特征[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 254-260.
[10] 田飞, 高颂, 李铮, 王颖慧, 王媛媛. 1989至2020年北京市东城区1 076例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者生存时间及影响因素[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(02): 100-107.
[11] 李娜, 王丹. 肾移植受者HCV感染研究进展[J]. 中华移植杂志(电子版), 2023, 17(01): 58-62.
[12] 李娜, 丁小明, 丁晨光, 王丹. 索非布韦联合雷迪帕韦在肾移植HCV感染受者中的应用[J]. 中华移植杂志(电子版), 2022, 16(06): 359-364.
[13] 李玉娟, 潘蕾, 鱼高乐, 代川川, 南岩东, 金发光. 获得性免疫缺陷综合征并发卡氏肺孢子菌肺炎一例报告[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 600-602.
[14] 万秋, 唐莉歆. 获得性免疫缺陷综合征合并慢性阻塞性肺疾病的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 129-131.
[15] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
阅读次数
全文


摘要