[56] |
Yin Y, Yu S, Sun Y, et al. Glycosylation deletion of hemagglutinin head in the H5 subtype avian influenza virus enhances its virulence in mammals by inducing endoplasmic reticulum stress[J]. Transbound Emerg Dis,2020;67(4):1492-1506.
|
[57] |
Kim NY, Jung WW, Oh YK, et al. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission[J]. Xenotransplantation,2007,14(2):104-111.
|
[58] |
Antonopoulos A, North SJ, Haslam SM, et al. Glycosylation of mouse and human immune cells: insights emerging from N-glycomics analyses[J]. Biochem Soc Trans,2011,39(5):1334-1340.
|
[59] |
Whiteman MC, Li L, Wicker JA, et al. Development and characterization of non-glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus[J]. Vaccine,2010,28(4): 1075-1083.
|
[60] |
Galili U. Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics?[J]. Glycobiology, 2016,26(11):1140-1150.
|
[61] |
Neil SJ, McKnight A, Gustafsson K, et al. HIV-1 incorporates ABO histo-blood group antigens that sensitize virions to complement-mediated inactivation[J]. Blood,2005,105(12):4693-4699.
|
[62] |
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation[J]. Glycobiology,2018,28(7):443-467.
|
[63] |
Wang W, Nie J, Prochnow C, et al. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization[J]. Retrovirology,2013,10(1):1-28.
|
[64] |
Iraqi M, Edri A, Greenshpan Y, et al. N-Glycans Mediate the Ebola Virus-GP1 Shielding of Ligands to Immune Receptors and Immune Evasion[J]. Front Cell Infect Microbiol,2020,10(1):1-11.
|
[65] |
Henderson EA, Tam CC, Cheng LW, et al. Investigation of the immunogenicity of Zika glycan loop[J]. Virol J,2020,17(1):1-15.
|
[66] |
Moratorio G, Vignuzzi M. Monitoring and redirecting virus evolution[J]. PLoS Pathog,2018,14(6):e1006979.
|
[1] |
Bouwman Tokatlian T, Read BJ, Jones CA, et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers[J]. Science,2019,363(6427):649-654.
|
[2] |
Bayer K, Banning C, Bruss V, et al. Hepatitis C virus is released via a noncanonical secretory route[J]. J Virol,2016,90(23):10558-10573.
|
[3] |
Luther KB, Hülsmeier AJ, Schegg B, et al. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme[J]. J Biol Chem,2011,286(51):43701-43709.
|
[4] |
Xiang Y, Baxa U, Zhang Y, et al. Crystal structure of a virus-encoded putative glycosyltransferase[J]. J Virol,2010,84(23):12265-12273.
|
[5] |
Kumar S, Maurya VK, Prasad AK, et al. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV)[J]. Virusdisease,2020,31(1):13-21.
|
[6] |
An Y, McCullers JA, Alymova I, et al. Glycosylation analysis of engineered H3N2 influenza A virus hemagglutinins with sequentially added historically relevant glycosylation sites[J]. J Proteome Res,2015,14(9):3957-3969.
|
[7] |
Huang Y, Owino SO, Crevar CJ, et al. N-linked glycans and K147 residue on hemagglutinin synergize to elicit broadly reactive H1N1 influenza virus antibodies[J]. J Virol,2020,94(6):e01432-19.
|
[8] |
Wu NC, Wilson IA. A Perspective on the structural and functional constraints for immune evasion: insights from influenza virus[J]. J Mol Biol,2017,429(17):2694-2709.
|
[9] |
Rouvinski A, Dejnirattisai W, Guardado-Calvo P, et al. Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope[J]. Nat Commun,2017,8(1):1-12.
|
[10] |
Igarashi M, Ito K, Kida H, et al. Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin[J]. Virology,376(2008):323-329.
|
[11] |
Shao T, Pan J, Zhang S, et al. Application of MCMC-based bayesian modeling for genetic evolutionary and dynamic change analysis of Zika virus[J]. Front Genet,2020,10(1):1-9.
|
[12] |
Yin Y, Yu S, Sun Y, et al. Glycosylation deletion of hemagglutinin head in the H5 subtype avian influenza virus enhances its virulence in mammals by inducing endoplasmic reticulum stress[J]. Transbound Emerg Dis,2020,67(4):1492-1506.
|
[13] |
Manning JT, Yun NE, Seregin AV, et al. The glycoprotein of the live-attenuated Junin virus vaccine strain induces ER stress and forms aggregates prior to degradation in the lysosome[J]. J Virol,2020,94(8):e01693-19.
|
[14] |
Liang JJ, Chou MW, Lin YL. DC-SIGN binding contributed by an extra N-linked glycosylation on Japanese encephalitis virus envelope protein reduces the ability of viral brain invasion[J]. Front Cell Infect Microbiol,2018,8(1):1-9.
|
[15] |
Yan D, Shi Y, Wang H, et al. A single mutation at position 156 in the envelope protein of tembusu virus is responsible for virus tissue tropism and transmissibility in ducks[J]. J Virol,2018,92(17):e00427-18.
|
[16] |
Boyoglu-Barnum S, Hutchinson GB, Boyington JC, et al. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses[J]. Nat Commun,2020,11(1):1-12.
|
[17] |
Salpini R, Piermatteo L, Battisti A, et al. A hyper-glycosylation of HBV surface antigen correlates with HBsAg-negativity at immunosuppression-driven HBV reactivation in vivo and hinders HBsAg recognition in vitro[J]. Viruses,2020,12(2):E251.
|
[18] |
Biering SB, Huang A, Vu AT, et al. N-Glycans on the Nipah virus attachment glycoprotein modulate fusion and viral entry as they protect against antibody neutralization[J]. J Virol,2012,86(22):11991-2002.
|
[19] |
Cook JD, Lee JE. The secret life of viral entry glycoproteins: moonlighting in immune evasion[J]. PLoS Pathog,2013,9(5): e1003258.
|
[20] |
Hastie KM, Zandonatti MA, Kleinfelter LM, et al. Structural basis for antibody-mediated neutralization of Lassa virus[J]. Science,2017,356(6341):923-928.
|
[21] |
Thiemmeca S, Tamdet C, Punyadee N, et al. Secreted NS1 protects dengue virus from mannose-binding lectin-mediated neutralization[J]. J Immunol,2016,197(10):4053-4065.
|
[22] |
Hoebe EK, Le Large TY, Tarbouriech N, et al. Epstein-Barr virus-encoded BARF1 protein is a decoy receptor for macrophage colony stimulating factor and interferes with macrophage differentiation and activation[J]. Viral Immunol,2012,25(6):461-470.
|
[23] |
Ressing ME, van Leeuwen D, Verreck FA, et al. Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class Ⅱ immune evasion[J]. J Virol,2005,79(2):841-852.
|
[24] |
Colgrave ML, Snelling HJ, Shiell BJ, et al. Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus[J]. Glycobiology, 2012,22(4):572-584.
|
[25] |
Hsieh P, Rosner MR, Robbins PW. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins[J]. J Biol Chem,1983,258(4):2548-2554.
|
[26] |
Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosylation in enveloped virus pathobiology[J]. Biochim Biophys Acta Gen Subj,2019,1863(10):1480-1497.
|
[27] |
Go EP, Ding H, Zhang S, et al. Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven env trimers[J]. J Virol,2017,91(9): e02428-16.
|
[28] |
Parsons LM, An Y, Qi L, et al. Influenza virus hemagglutinins H2, H5, H6, and H11 are not targets of pulmonary surfactant protein D: N-glycan subtypes in host-pathogen interactions[J]. J Virol,2020,94(5):e01951-19.
|
[29] |
Zhang S, Sherwood RW, Yang Y, et al. Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts[J]. Proteomics,2012,12(8):1269-1288.
|
[30] |
Carbaugh DL, Lazear HM. Flavivirus envelope protein glycosylation: impacts on viral infection and pathogenesis[J]. J Virol,2020,94(11):e00104-20.
|
[31] |
Hacker K, White L, de Silva AM. N-linked glycans on dengue viruses grown in mammalian and insect cells[J]. J Gen Virol,2009,90(9):2097-2106.
|
[32] |
Bonomelli C, Doores KJ, Dunlop DC, et al. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade[J]. PLoS One,2011,6(8):e23521.
|
[33] |
Wang S, Voronin Y, Zhao P, et al. Glycan profiles of gp120 protein vaccines from four major HIV-1 subtypes produced from different host cell lines under non-GMP or GMP conditions[J]. J Virol,2020,94(7):e01968-19.
|
[34] |
Yang YR, McCoy LE, van Gils MJ, et al. Autologous neutralizing antibody responses to an HIV envelope glycan hole are not easily broadened in rabbits[J]. J Virol,2020,94(7):e01861-19.
|
[35] |
Seabright GE, Doores KJ, Burton DR, et al. Protein and glycan mimicry in HIV vaccine design[J]. J Mol Biol,2019,431(12):2223-2247.
|
[36] |
Feinberg H, Mitchell DA, Drickamer K, et al. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR[J]. Science,2001,294(5549):2163-2166.
|
[37] |
Wasik BR, Barnard KN, Parrish CR. Effects of sialic acid modifications on virus binding and infection[J]. Trends Microbiol,2016,24(12):991-1001.
|
[38] |
Langereis MA, Bakkers MJ, Deng L, et al. Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins[J]. Cell Rep,2015,11(12):1966-1978.
|
[39] |
Vimr ER. Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids[J]. ISRN Microbiol,2013,2013(1):1-26.
|
[40] |
Anand SP, Finzi A. Understudied factors influencing Fc-mediated immune responses against viral infections[J]. Vaccines (Basel),2019,7(3):1-14.
|
[41] |
Pritchard LK, Harvey DJ, Bonomelli C, et al. Cell- and protein-directed glycosylation of native cleaved HIV-1 envelope[J]. J Virol,2015,89(17):8932-8944.
|
[42] |
Stencel-Baerenwald JE, Reiss K, Reiter DM, et al. The sweet spot: defining virus-sialic acid interactions[J]. Nat Rev Microbiol,2014,12(11):739-749.
|
[43] |
Bouwman KM, Habraeken N, Laconi A, et al. N-glycosylation of infectious bronchitis virus M41 spike determines receptor specificity[J]. J Gen Virol,2020,101(6):599-608.
|
[44] |
Baum LG, Paulson JC. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity[J]. Acta Histochem Suppl,1990,40(1):35-38.
|
[45] |
Van Breedam W, Pöhlmann S, Favoreel HW, et al. Bitter-sweet symphony: glycan-lectin interactions in virus biology[J]. FEMS Microbiol Rev,2014,38(4):598-632.
|
[46] |
Shida H, Dales S. Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecules[J]. Virology,1981,111(1):56-72.
|
[47] |
Silver ZA, Antonopoulos A, Haslam SM, et al. Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies[J]. Cell Rep,2020,30(6):1862-1869.
|
[48] |
Bräutigam J, Scheidig AJ, Egge-Jacobsen W. Mass spectrometric analysis of hepatitis C viral envelope protein E2 reveals extended microheterogeneity of mucin-type O-linked glycosylation[J]. Glycobiology,2013,23(4):453-474.
|
[49] |
Bagdonaite I, Nordén R, Joshi HJ, et al. Global Mapping of O-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus[J]. J Biol Chem,2016,291(23):12014-12028.
|
[50] |
Martinez O, Tantral L, Mulherkar N, et al. Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles[J]. J Infect Dis,2011,204(Suppl 3):S825-S832.
|
[51] |
Nordén R, Halim A, Nyström K, et al. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner[J]. J Biol Chem,2015,290(8):5078-5091.
|
[52] |
McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial virus surface glycoproteins[J]. Curr Top Microbiol Immunol,2013,372(1):83-104.
|
[53] |
Schmitt S, Glebe D, Alving K, et al. Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus[J]. J Biol Chem,1999,274(17):11945-11957.
|
[54] |
Midulla F, Di Mattia G, Nenna R, et al. Novel variants of respiratory syncytial virus A ON1 associated with increased clinical severity of bronchiolitis[J]. J Infect Dis,2020,222(1):102-110.
|
[55] |
Noyori O, Matsuno K, Kajihara M, et al. Differential potential for envelope glycoprotein-mediated steric shielding of host cell surface proteins among filoviruses[J]. Virology,2013,446(1-2):152-161.
|