切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 43 -48. doi: 10.3877/cma.j.issn.1674-1358.2024.01.007

论著

耐碳青霉烯类铜绿假单胞菌耐药性及联合药敏试验研究
韦涌涛1,(), 王松霞2, 苏爱美1, 王东平1   
  1. 1. 266100 青岛市,青岛市第八人民医院检验科
    2. 266100 青岛市,青岛市第八人民医院输血科
  • 收稿日期:2023-08-10 出版日期:2024-02-15
  • 通信作者: 韦涌涛

Resistance and combination drug sensitivity test of carbapenem-resistant Pseudomonas aeruginosa

Yongtao Wei1,(), Songxia Wang2, Aimei Su1, Dongping Wang1   

  1. 1. Department of Clinical Laboratory, Qingdao Eighth People’s Hospital, Qingdao 266100, China
    2. Department of Blood Transfusion, Qingdao Eighth People’s Hospital, Qingdao 266100, China
  • Received:2023-08-10 Published:2024-02-15
  • Corresponding author: Yongtao Wei
引用本文:

韦涌涛, 王松霞, 苏爱美, 王东平. 耐碳青霉烯类铜绿假单胞菌耐药性及联合药敏试验研究[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 43-48.

Yongtao Wei, Songxia Wang, Aimei Su, Dongping Wang. Resistance and combination drug sensitivity test of carbapenem-resistant Pseudomonas aeruginosa[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2024, 18(01): 43-48.

目的

分析耐碳青霉烯类铜绿假单胞菌(CRPA)耐药性,探讨黏菌素(COL)分别联合美罗培南(MEM)、头孢他啶(CAZ)、哌拉西林/他唑巴坦(TZP)及环丙沙星(CIP),阿米卡星(AK)分别联合TZP和CIP,TZP联合CIP对CRPA体外联合药物敏感性,筛选出有效的抗感染治疗方案。

方法

收集2022年1月至12月青岛市第八人民医院临床样本中分离的非重复CRPA共22株,采用微量肉汤稀释法测定抗菌药物对菌株的最低抑菌浓度(MIC),棋盘法进行联合药敏试验,计算部分抑菌浓度指数(FIC)判定联合效果。

结果

22株CRPA对哌拉西林(PRL)、头孢哌酮/舒巴坦(SCF)、氨曲南(ATM)、亚胺培南(IPM)和MEM 5种抗菌药物耐药率均> 90%,对头孢吡肟(FEP)、TZP、左氧氟沙星(LEV)、CAZ、CIP、庆大霉素(CN)、妥布霉素(TOB)及AK耐药率分别为81.8%(18/22)、77.3%(17/22)、77.3%(17/22)、72.7%(16/22)、68.2%(15/22)、63.6%(14/22)、63.6%(14/22)和54.5%(12/22),对头孢他啶/阿维巴坦(CZA)耐药率为9.1%(2/22),对COL耐药率为0(0/22)。CRPA联合药敏显示:COL + MEM协同率为59.1%(13/22),协同率与相加率之和为100%(22/22)。COL + CAZ、COL + TZP、COL + CIP、AK + TZP、AK + CIP及TZP + CIP协同率分别为45.4%(10/22)、54.5%(12/22)、31.8%(7/22)、22.7%(5/22)、31.8%(7/22)和9.1%(2/22),协同率与相加率之和分别为81.8%(18/22)、90.9%(20/22)、77.3%(17/22)、77.3%(17/22)、68.2%(15/22)和59.1%(13/22),所有组合均未出现拮抗作用。

结论

CZA可单药用于CRPA敏感株,联合用药组中,COL + MEM组合的协同率与相加率最高,TZP + CIP协同率与相加率之和最低,可作为临床经验用药参考。

Objective

To analyze drug resistance of carbapenem resistant Pseudomonas aeruginosa (CRPA), and to investigate the in vitro susceptibility test result of colistin (COL) combined with meropenem (MEM), ceftazidime (CAZ), piperacillin/tazobactam (TZP), ciprofloxacin (CIP) and amikacin (AK) combined with TZP, CIP and TZP combined with CIP to CRPA for screen the effective anti-infective therapy.

Methods

Total of 22 strains of CRPA were isolated from clinic specimens from Qingdao Eighth People’s Hospital from January 2022 to December 2022. The minimal inhibitory concentration (MIC) of antimicrobial agents against CRPA strains was determined by micro broth dilution method. Combined antimicrobial susceptibility test was performed by the chessboard dilution method. Fractional inhibitory concentration (FIC) index was calculated to determine the combined effect.

Results

The resistance rates of CRPA to piperacillin (PRL), cefoperazone/sulbactam (SCF), Aztreonam (ATM), imipenem (IPM) and MEM were higher than 90%. The resistance rates to cefepime (FEP), TZP, levofloxacin (LEV), CAZ, CIP, gentamicin (CN), tobramycin (TOB) and AK were 81.8% (18/22), 77.3% (17/22), 77.3% (17/22), 72.7% (16/22), 68.2% (15/22), 63.6% (14/22), 63.6% (14/22) and 54.5% (12/22), respectively. The resistance rates to CZA and COL were 9.1% (2/22) and 0 (0/22), respectively. The results of antimicrobial synergy study showed that the synergistic rates of COL and MEM were 59.1% (13/22), and the sum of synergistic rates and additive rates were 100% (22/22). The synergistic rates of COL + CAZ, COL + TZP, COL + CIP, AK + CIP, TZP + CIP were 45.4% (10/22), 54.5% (12/22), 31.8% (7/22), 22.7% (5/22), 31.8% (7/22) and 9.1% (2/22), and the sum of synergistic rates and additive rates were 81.8% (18/22), 90.9% (20/22), 77.3% (17/22), 77.3% (17/22), 68.2% (15/22) and 59.1% (13/22), respectively. No antagonism effect was observed for all combinations.

Conclusions

CZA alone is effective for CRPA sensitive strains. Among all the combinations, COL + MEM had the highest synergy rate and addition rate, TZP and CIP has the lowest synergy rate and addition rate, which could provide reference for clinical experience medication.

表1 22株CRPA对常用抗菌药物的耐药率[株(%)]
表2 22株CRPA对常见抗菌药物的MIC值(μg/ml)
表3 7种联合方案对22株CRPA菌株药敏试验协同结果
[1]
Hu YY, QingY, Chen JW, et al. Prevalence, risk factors, and molecular epidemiology of Intestinal carbapenem-resistant Pseudomonas aeruginosa[J]. Microbiol Spectr,2021,9(3):e0134421.
[2]
张长文, 林少清, 吕敏捷, 等. 铜绿假单胞菌分泌蛋白Pec1抑制巨噬细胞自噬及影响铜绿假单胞菌清除效应初步观察[J/CD]. 中华实验和临床感染病杂志(电子版),2022,16(6):370-376.
[3]
Yang X, Lai Y, Li C, et al. Molecular epidemiology of Pseudomonas aeruginosa isolated from lower respiratory tract of ICU patients[J]. Revista Brasleira De Biol,2021,81(2):351-360.
[4]
中国细菌耐药监测协作网. 中国细菌耐药监测网[EB/OL]. 2022-05-05.

URL    
[5]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. M100-S32.Wayne,PA: CLSI,2022.
[6]
杨启文, 马筱玲, 胡付品, 等. 多黏菌素药物敏感性检测及临床解读专家共识[J]. 协和医学杂志,2020,11(5):559-570.
[7]
中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版)[J]. 中华结核和呼吸杂志,2022,45(8):739-752.
[8]
陆国平, 唐浩, 夏兆新, 等. 11种联合方案对耐碳青霉烯类肠杆菌的体外联合药敏试验[J]. 中国感染控制杂志,2023,22(3):287-294.
[9]
汪复, 张婴元, 朱德妹, 等. 实用抗感染治疗学[M]. 3版. 北京: 北京人民卫生出版社,2020:21.
[10]
冯江涛, 赵建平, 杨国安, 等. 某院连续5年耐亚胺培南铜绿假单胞菌临床分布及其耐药性变迁[J]. 中国感染控制杂志,2023,22(4):411-417.
[11]
杨兴肖, 李锦锦, 王媛, 等. 某肿瘤医院耐碳青霉烯类铜绿假单胞菌下呼吸道感染患者临床特征及危险因素[J]. 中华医院感染学杂志,2022,32(16):2425-2428.
[12]
Li ZJ, Wang KW, Liu B, et al. The distribution and source of MRDOs infection: a retrospective study in 8 ICUs, 2013-2019[J]. Infect Drug Resist,2021,14:4983-4991.
[13]
Campion M, Scully G. Antibiotic use in the intensive care unit: optimization and deescalation[J]. J Intensive Care Med,2018,33(12): 647-655.
[14]
Raman G, Avendano EE, Chan J, et al. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections:a systematic review and meta-analysis[J]. Antimicrob Resist Infect Control,2018,7:79.
[15]
Coppry M, Jeanne-Leroyer C, Noize P, et al. Antibiotics associated with acquisition of carbapenem-resistant Pseudomonas aeruginosa in ICUs: a multicentre nested case-case-controlstudy[J]. J Antimicrob, 2019,74(2):503-510.
[16]
Chemother, Tamma PD, Atiken SL, et al. Infectious Diseases Society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa)[J]. Clin Infect Dis,2021,72(7):1109-1116.
[17]
苏佳纯, 杨帆. 头孢他啶-阿维巴坦在铜绿假单胞菌感染中的应用价值[J]. 中国感染与化疗杂志,2023,23(2):237-242.
[18]
Tamma PD, Aitken S, Bonomo RA, et al. Infectious Diseases Society of America 2022 guidance on the treatmentof extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aerugunosa)[J]. Clin Infect Dis,2022,75(2):187-212.
[19]
江玲芝, 汪明珊, 邵自强, 等. 头孢他啶/阿维巴坦治疗碳青霉烯类耐药革兰阴性菌感染患者的临床特征及预后分析[J]. 中华临床感染病杂志,2021,14(3):193-198.
[20]
陈涛, 徐晔, 董郭枫, 等. 头孢他啶/阿维巴坦单独和联合磷霉素碳青霉烯类耐药革兰阴性菌体外抗菌活性研究[J]. 检验医学,2020,35(10):988-993.
[21]
Lee M, Abbey T, Biagi M, et al. Activity of aztreonamin combination with ceftazidime-avibactam against serine- and metallo-β-lactamase-producing Pseudomonas aeruginosa[J]. Diagn Microbiol Infect Dis,2021,99(1):115227.
[22]
Mataraci Kara E, Yilmaz M, Istanbullu Tosun A, et al. Synergistic activities of ceftazidime-avibactamin combination with different antibiotics against colistin-nonsusceptible clinical strains of Pseudomonas aeruginosa[J]. Infect Dis,2020,52(9):616-624.
[23]
Montero MM, Domene Ochoa S, Lopez-causape C, et al. Time-kill evaluation of antibiotic combinations containing ceftazidime-avibactam against extensively drug-resistant Pseudomonas aeruginosa and their potential role againstceftazidime-avibactam-resistant isolates[J]. Microbiol Spectr,2021,9(1):e0058521.
[24]
Zhou Q, Wang H, Zhan T, et al. Successful treatment of ventriculitis caused by MDR/XDR Gram-negative bacillus using ceftazidime/avibactam: case series and literature review[J]. Infect Drug Resist,2021,14:1691-1701.
[25]
中国医药教育协会感染疾病专业委员会, 中华医学会呼吸病学分会, 中华医学会重症医学分会. 等.中国多黏菌素类抗菌药物临床合理应用多学科专家共识[J]. 中华结核和呼吸杂志,2021,44(4):292-310.
[26]
丁丽, 陈佰义, 李敏, 等. 碳青霉烯类耐药革兰阴性菌联合药敏试验及报告专家共识[J]. 中国感染与化疗杂志,2023,23(1):80-90.
[1] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 苏爱美, 韦涌涛, 王东平. 耐碳青霉烯类肠杆菌耐药性及联合药敏试验研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 333-340.
[4] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[5] 刘鑫, 闻萍, 周阳, 徐玲玲. 维持性血液透析合并菌血症患者病原菌分布及耐药性分析[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 192-197.
[6] 李菲, 张大伟, 刘玉磊, 谢江, 朱光发. 产褥期血流感染者炎性指标及病原菌分布特征[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 243-249.
[7] 顾思超, 李敏, 童润, 詹庆元. 肺移植供受者术中及术后48小时内肺部病原菌分布特点及预防性抗菌药物应用策略[J]. 中华移植杂志(电子版), 2021, 15(05): 282-285.
[8] 魏芳芳, 胡浩, 黄丽华, 韩旻雁, 姚麟. 某院2016~2020年泌尿外科多重耐药病原菌分布及耐药性分析[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 320-324.
[9] 蔡小芳, 高慧, 葛军, 邢慧芸, 庄小燕, 李小丁. 多重耐药性肺结核治疗依从性预测分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 51-56.
[10] 刘法永, 胡萍, 戴丽. 获得性肺炎患者血流感染病原菌分布及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 666-669.
[11] 谭自明, 罗琼, 张美, 王君. 小儿病毒性脑炎并发肺部感染的病原菌及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 394-396.
[12] 黎金秋, 韦晓芳, 王成玉. 腹膜透析相关性腹膜炎细菌谱变迁及药敏分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 264-269.
[13] 吴旻杭, 曹莉莉. 细胞自噬在肝癌进展中的作用[J]. 中华消化病与影像杂志(电子版), 2021, 11(05): 222-225.
[14] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144.
[15] 刁福强, 罗欣, 古春明, 唐玲玲. 广州某医院儿童社区获得性肺炎病原菌分布及耐药性分析[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 38-44.
阅读次数
全文


摘要