切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 222 -229. doi: 10.3877/cma.j.issn.1674-1358.2023.04.002

论著

2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析
张海金(), 王增国, 蔡慧君, 赵炳彤   
  1. 710003 西安市,西安市儿童医院控感办;710003 西安市,西安交通大学医学部公共卫生学院
    710003 西安市,西安市儿童医院检验科
    710003 西安市,西安市儿童医院控感办
  • 收稿日期:2023-04-03 出版日期:2023-08-15
  • 通信作者: 张海金
  • 基金资助:
    国家自然科学基金面上项目(No. 82172312)

Distribution and drug resistance of pathogenic bacteria in neonates from 2020 to 2022 in Xi’an Children’s Hospital

Haijin Zhang(), Zengguo Wang, Huijun Cai, Bingtong Zhao   

  1. Department of Control Infection, Xi’an Children’s Hospital, Xi’an 710003, China; Xi’an Jiaotong University Health Science Center School of Public Health, Xi’an 710003, China
    Department of Medical Laboratory, Xi’an Children’s Hospital, Xi’an 710003, China
    Department of Control Infection, Xi’an Children’s Hospital, Xi’an 710003, China
  • Received:2023-04-03 Published:2023-08-15
  • Corresponding author: Haijin Zhang
引用本文:

张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.

Haijin Zhang, Zengguo Wang, Huijun Cai, Bingtong Zhao. Distribution and drug resistance of pathogenic bacteria in neonates from 2020 to 2022 in Xi’an Children’s Hospital[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(04): 222-229.

目的

分析2020至2022年于西安市儿童医院住院的新生儿患者细菌感染的病原学分布特点及耐药性。

方法

收集2020年1月至2022年12月西安市儿童医院住院新生儿分离的病原菌,对其菌株分布及耐药性进行分析,并采用Pearson卡方检验与全国儿童细菌耐药监测数据进行比较。

结果

由9 346例住院患儿临床样本中共分离496株病原菌,其中革兰阴性菌251株(50.60%),革兰阳性菌231株(46.57%);真菌14株(2.83%)。检出菌居前5位病原菌依次为大肠埃希菌(90株、18.15%)、凝固酶阴性葡萄球菌(71株、14.31%)、肺炎克雷伯菌(69株、13.91%)、金黄色葡萄球菌(57株、11.49%)和屎肠球菌(41株、8.27%)。496株病原菌中多重耐药菌184株(37.09%)。多重耐药菌中革兰阴性菌105株(57.07%),革兰阳性菌79株(42.93%)。耐药菌检出率最高的为肺炎克雷伯菌(58株、84.06%),凝固酶阴性葡萄球菌、金黄色葡萄球菌、大肠埃希菌、鲍曼不动杆菌和铜绿假单胞菌的耐药菌检出率分别为78.87%(56株)、40.35%(23株)、40.00%(36株)、36.36%(4株)和33.33%(7株)。新生儿所检出病原菌对多种抗菌药物呈现不同程度的耐药性,部分菌株耐药率与全国儿童感染细菌耐药性的监测数据存在较大差异,其中凝固酶阴性葡萄球菌(97.2%)对青霉素类耐药率高于金黄色葡萄球菌(94.7%),本院检出的金黄色葡萄球菌和凝固酶阴性葡萄球菌对克林霉素的耐药率为68.4%和59.2%,显著高于全国监测数据(36.7%和42.3%)(χ2 = 24.431、P < 0.001,χ2 = 8.119、P = 0.004);与全国监测数据相比,本研究所分离大肠埃希菌对头孢类抗菌药物耐药率存在差异,对头孢唑林(75.5%)、头孢呋辛(67.8%)和头孢曲松(65.5%)耐药率均达60%以上,显著高于全国监测数据(58.8%、47.5%和46.6%),差异均有统计学意义(χ2 = 10.329、P = 0.001,χ2 = 14.674、P < 0.001,χ2 = 12.841、P < 0.001)。肺炎克雷伯菌对头孢类抗菌药物耐药率达50%以上,对头孢曲松、头孢唑林、头孢他啶、头孢呋辛耐药率分别为76.8%、68.1%、63.8%和62.3%,显著高于全国儿童耐药监测数据(44.1%、53.2%、30.6%和49.0%)(χ2 = 29.240、P < 0.001,χ2 = 6.056、P = 0.014,χ2 = 34.583、P < 0.001,χ2 = 4.789、P = 0.029);对美罗培南和亚胺培南耐药率分别为39.1%和40.6%,显著高于全国监测数据(14.8%和11.7%)(χ2 = 30.816、P < 0.001,χ2 = 52.243、P < 0.001),差异有统计学意义。

结论

本院2020至2022年住院新生儿致病菌以葡萄球菌、大肠埃希菌和肺炎克雷伯菌居多。金黄色葡萄球菌和凝固酶阴性葡萄球菌对克林霉素的耐药率、大肠埃希菌对头孢唑林、头孢呋辛、头孢曲松的耐药率、肺炎克雷伯菌对头孢类及碳青霉烯类抗菌药物的耐药率均显著高于全国监测数据,提醒本地区应加强对重点耐药菌的监测,根据药敏试验结果合理使用抗菌药物。

Objective

To investigate the characteristics of distribution and drug resistance of bacterial infection in neonates from 2020 to 2022 in Xi’an Children’s Hospital.

Methods

The specimens were collected from hospitalized neonates from January 2020 to December 2022 in Xi’an Children’s Hospital, and the distribution, composition and drug resistance of the specimens were analyzed, which were compared with the national children surveillance data by Pearson Chi-square test.

Results

Total of 496 strains of bacteria were isolated from 9 346 specimens; including 251 (50.60%) strains of Gram-negative bacteria and 231 (46.57%) strains of Gram-positive bacteria; 14 (2.83%) strains of fungi. The top-five bacteria were Escherichia coli (Eco) (90 strains, 18.15%), Coagulase negative Staphylococci (CNS) (71 strains, 14.31%), Klebsiella peneumoniae (Kpn) (69 strains, 13.91%), Staphylococcus aureus (Sau) (57 strains, 11.49%) and Enterococcus faecium (Efa) (41 strains, 8.27%). Total of 184 strains of multi-drug resistant bacteria were detected from 496 pathogenic bacteria (37.09%); 105 (57.07%) strains of Gram-negative bacteria and 79 (42.93%) strains of Gram-positive bacteria were detected among multiple drug resistant bacteria. The detection rates of Kpn, CNS, Sau, Eco, AB and Pa were 58 strains (84.06%), 56 strains (78.87%), 23 strains (40.35%), 36 strains (40.00%), 4 strains (36.36%) and 7 strains (33.33%). The strains were highly resistant to many kinds of antibiotics, some drug resistance rates were significantly different from the national surveillance levels. The resistance rate of CNS (97.2%) to penicillin were significantly higher than those of Sau (94.7%). The resistance rate of Sau and CNS against clindamycin were 68.4% and 59.2%, which were significantly higher than those of the national surveillance levels (36.7% and 42.3%) (χ2 = 24.431, P < 0.001; χ2 = 8.119, P = 0.004). The resistance rates of Eco to cephalosporins were different as the follows: 75.5% to cefazolin, 67.8% to cefuroxime, 65.5% to cefatriaxone, which were significantly higher than those of the national surveillance levels (58.8%, 47.5% and 46.6%) (χ2 = 10.329, P = 0.001; χ2 = 14.674, P < 0.001; χ2 = 12.841, P < 0.001). The resistance rates of Kpn to cephalosporins were as the follows: 76.81% to cefatriaxone, 68.1% to Cefazolin, 62.8% to ceftazidime, 62.3% to cefuroxime, which were significantly higher than those of the national surveillance levels (44.1%, 53.2%, 30.6% and 49.0%), with significant differences (χ2 = 29.240, P < 0.001; χ2 = 6.056, P = 0.014, χ2 = 34.583, P < 0.001; χ2 = 4.789, P = 0.029). The resistance rates to meropenem and imipenem were 39.1% and 40.6%, respectively, significantly higher than 14.8% and 11.7% of the national monitoring data, with significant differences (χ2 = 30.816, P < 0.001; χ2 = 52.243, P < 0.001).

Conclusions

The majority of hospitalized neonatal pathogens from 2020 to 2022 in our hospital were CNS, Eco and Kpn. The drug resistance rates of Sau and CNS to clindamycin; Eco to cefazolin, cefuroxime, and ceftriaxone, and Kpn to cephalosporins and carbapenems were significantly higher than the national surveillance data. Antibiotics should be used rationally according to the distribution of main pathogenic bacteria locally and the results of drug sensitivity.

表1 入组新生儿所分离病原菌分布
表2 入组新生儿病原菌分离株标本来源及前5位分离株
表3 住院新生儿主要耐药菌及样本来源
表4 Sau和CNS对常用抗菌药物的耐药率[株(%)]
表5 Eco对常用抗菌药物的耐药率[株(%)]
表6 Kpn对常用抗菌药物的耐药率[株(%)]
[1]
付盼,王传清,俞蕙, 等. 中国儿童细菌耐药监测组2021年儿童细菌耐药监测[J]. 中国循证儿科杂志,2022,17(5):355-362.
[2]
曲嘉林,申燕,易四维. 2014-2019年新生儿血流感染病原菌分布及耐药性分析[J]. 检验医学与临床,2022,19(11):1549-1553.
[3]
Sands K, Carvalho MJ, Portal E, et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries[J]. Nat Microbiol,2021,6(4):512-523.
[4]
Briggs-Steinberg C, Roth P. Early-onset sepsis in newborns[J]. Pediatr Rev,2023,44(1):14-22.
[5]
岳欣. 新生儿血培养主要病原菌分布及耐药性研究[J]. 中国预防医学杂志,2020,21(2):219-223.
[6]
Weimer KED, Smith PB, Puia-Dumitrescu M, et al. Invasive fungal infections in neonates: a review[J]. Pediatr Res,2022,91(2):404-412.
[7]
Kilpatrick R, Scarrow E, Hornik C, et al. Neonatal invasive candidiasis: updates on clinical management and prevention[J]. Lancet Child Adolesc Health,2022,6(1):60-70.
[8]
中华医学会儿科学分会新生儿学组,中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志,2019,57(4):252-257.
[9]
Karampatsas K, Davies H, Mynarek M, et al. Clinical risk factors associated with late-onset invasive group B Streptococcal disease: systematic review and Meta-analyses[J]. Clin Infect Dis,2022,75(7):1255-1264.
[10]
Dong Y, Basmaci R, Titomanlio L, et al. Neonatal sepsis: within and beyond China[J]. Chin Med J (Engl),2020,133(18):2219-2228.
[11]
李娟,高坎坎,容莉莉, 等. 新生儿侵袭性B族链球菌的耐药表型及耐药机制[J/CD]. 中华实验和临床感染病杂志(电子版),2018,12(1):20-27.
[12]
徐豪,司沛茹,刘慧. 4 760例新生儿血培养病原菌分布及耐药性分析[J]. 临床儿科杂志,2016,34(5):399.
[13]
Lamiaa M, Nermin R, Dalia S, et al. Emerging antimicrobial resistance in early and late-onset neonatal sepsis[J]. Antimicrob Resist In,2017,6(63):1-9.
[14]
García-Álvarez L, Holden MT, Lindsay H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study[J]. Lancet Infect Dis,2011,11(8):595-603.
[15]
Miller LS, Fowler VG, Shukla SK, et al. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms[J]. FEMS Microbiol Rev,2020,44(1):123-153.
[16]
Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research[J]. Nat Rev Microbiol,2019,17(4):203-218.
[17]
顾雯雯. 新生儿感染性疾病危险因素分析与对策[J/CD]. 中华实验和临床感染病杂志(电子版),2016,10(1):93-95.
[18]
Zhang D, Hu Y, Zhu Q, et al. Proteomic interrogation of antibiotic resistance and persistence in Escherichia coli-progress and potential for medical research[J]. Expert Rev Proteomics,2020,17(5):393-409.
[19]
Snyman Y, Whitelaw AC, Reuter S, et al. Colistin resistance mechanisms in clinical Escherichia coli and Klebsiella spp. isolates from the Western Cape of South Africa[J]. Microb Drug Resist,2021,27(9):1249-1258.
[20]
Yin D, Zhang L, Wang A, et al. Clinical and molecular epidemiologic characteristics of carbapenem-resistant Klebsiella pneumoniae infection/colonization among neonates in China[J]. J Hosp Infect,2018,100(1):21-28.
[21]
Hu Y, Anes J, Devineau S, et al. Klebsiella pneumoniae: prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: A hitherto unrecognized zoonotic bacterium[J]. Foodborne Pathog Dis,2021,18(2):63-84.
[22]
赵容陶,娜木罕,朝宝, 等. 新生儿肺炎克雷伯菌败血症的临床特征及耐药性分析[J]. 中国妇幼健康研究,2022,33(6):96-102.
[23]
Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives[J]. J Intern Med,2020,287(3):283-300.
[24]
Berglund B, Hoang NTB, Lundberg L, et al. Clonal spread of carbapenem-resistant Klebsiella pneumoniae among patients at admission and discharge at a Vietnamese Neonatal Intensive Care Unit[J]. Antimicrob Resist Infect Control,2021,10(1):162.
[25]
管红艳,刘婧娴,陈峰, 等. 儿童重症监护病房耐碳青霉烯类肠杆菌科细菌主动筛查及临床资料分析[J]. 中国感染与化疗杂志,2021,21(4):444-448.
[26]
夏粉芳,郑春梅,姜丹, 等. 神经外科重症监护室耐碳青霉烯类肠杆菌科细菌主动筛查结果[J]. 中华医院感染学杂志,2021,31(22):3427-3431.
[1] 张禾璇, 杨雪, 王侣金, 李林洁, 刘兴宇. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查及基因突变特征分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 200-208.
[2] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[3] 张艳兰, 徐琳, 王彩英, 杨洪玲, 庞琳. 56例先天性梅毒新生儿的临床特征及预后[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(03): 163-169.
[4] 朱琳, 陈韬, 张慎, 许东. 华中地区某三甲医院感染科近十年病原菌结构及耐药性变迁[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 75-82.
[5] 袁柳凤, 徐文绮, 朱小宇, 王慧珠, 伦文辉. 283株淋球菌对七种常见抗菌药物的耐药性分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 108-112.
[6] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[7] 巨春蓉, 门同义, 薛武军. 实体器官移植后难治性/耐药性巨细胞病毒感染诊疗进展[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 86-92.
[8] 方道成, 王勇, 胡媛媛. 泌尿系结石患者尿液菌谱及药敏特点分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 64-68.
[9] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[10] 杨慧, 郭丽娟, 冯晓丹, 李静, 黄成谋, 蔡兴锐, 覃英娇, 王远礼. 非小细胞肺癌铂类药物耐药mi RNA表达特征及预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 719-724.
[11] 李跃, 万玉峰, 何远强, 伏冉, 郑玉龙. 慢性共病患者并发医院获得性肺炎的病原菌分布及影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 446-449.
[12] 王蕊, 林先萍, 李盼盼. 铜绿假单胞菌感染肺炎菌血症危险因素及耐药性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 478-480.
[13] 蔡小芳, 高慧, 葛军, 邢慧芸, 庄小燕, 李小丁. 多重耐药性肺结核治疗依从性预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 51-56.
[14] 路长贵, 唐维兵. 新生儿及小婴儿先天性胆管扩张症临床特征分析及微创治疗[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(02): 76-82.
[15] 张雯雯, 雷文静, 宋鑫, 董魁, 王文革. 眼科术后感染性眼内炎影响因素及其病原学分析的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(02): 83-89.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?