切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 250 -256. doi: 10.3877/cma.j.issn.1674-1358.2021.04.006

论著

雷帕霉素对核苷类逆转录酶抑制剂治疗人类免疫缺陷病毒感染并发神经病理性痛的影响
武良玉1, 程灏1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院麻醉科
  • 收稿日期:2020-09-27 出版日期:2021-08-15
  • 通信作者: 程灏
  • 基金资助:
    李桓英联合基金(No. 14JL-L08)

Effects of rapamycin on the neuropathic pain complicated with nucleoside reverse transcriptase inhibitors treatment of human immunodeficiency virus infection

Liangyu Wu1, Hao Cheng1,()   

  1. 1. Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2020-09-27 Published:2021-08-15
  • Corresponding author: Hao Cheng
引用本文:

武良玉, 程灏. 雷帕霉素对核苷类逆转录酶抑制剂治疗人类免疫缺陷病毒感染并发神经病理性痛的影响[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 250-256.

Liangyu Wu, Hao Cheng. Effects of rapamycin on the neuropathic pain complicated with nucleoside reverse transcriptase inhibitors treatment of human immunodeficiency virus infection[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(04): 250-256.

目的

探讨雷帕霉素对核苷类逆转录酶抑制剂(NRTIs)类药物治疗人类免疫缺陷病毒(HIV)感染并发神经病理性痛的影响。

方法

40只健康雄性昆明小鼠随机分为对照组、司他夫定组、雷帕霉素+司他夫定组和羧甲基纤维素钠(CMC-Na)组(每组各10只)。司他夫定组和雷帕霉素+司他夫定组小鼠每隔24 h灌胃给予相应剂量的药物,对照组和CMC-Na组分别给予同等剂量的生理盐水和0.5% CMC-Na。分别于给药后7、14、21、28、35和42 d测定小鼠机械缩足反应阈和热缩足潜伏期,应用Western blot蛋白印迹检测小鼠脊髓组织中哺乳动物雷帕霉素靶蛋白(mTOR)的表达。

结果

给予司他夫定后7、14、21、28、35和42 d小鼠的机械/热痛阈值均显著下降(P均< 0.01)。与司他夫定组小鼠相比,雷帕霉素+司他夫定组小鼠在给药后7、14、21、28、35和42 d机械/热痛阈值均显著增加(P均< 0.05),其中给药后42 d,雷帕霉素缓解司他夫定所致小鼠机械痛敏[(8.41 ± 0.17) vs. (7.40 ± 0.13),t = 4.89、P = 0.034]和热痛敏[(6.25 ± 0.16) vs. (4.43 ± 0.21),t = 13.32、P < 0.001)的效应达到最大,差异有统计学意义。Western blot蛋白印迹结果显示,雷帕霉素+司他夫定组小鼠与司他夫定组小鼠相比,雷帕霉素可显著逆转司他夫定所致小鼠脊髓组织中磷酸化mTOR蛋白表达增加[(0.72 ± 0.04) vs. (0.86 ± 0.03),t = 4.24、P = 0.045)]。

结论

雷帕霉素可能通过抑制mTOR蛋白磷酸化而缓解NRTIs类药物治疗HIV感染并发的神经病理性痛。

Objective

To investigate the effect of rapamycin on neuropathic pain complicated with nucleoside reverse transcriptase inhibitors (NRTIs) treatment of human immunodeficiency virus (HIV) infection.

Methods

Forty male mice were divided into control group, stavudine group, rapamycin + stavudine group and sodium carboxymethyl cellulose (CMC-Na) group (n = 10), randomly. Mice in sastavidine group and rapamycin + stavidine group were intragastrically administered corresponding dose of drug every 24 h, and equivalent dose of saline and 0.5% CMC-Na were given to mice of control and CMC-Na groups, respectively. Behavioral tests were conducted at 7, 14, 21, 28, 35 and 42 days after drug administration, and the expression of mammalian target of rapamycin (mTOR) in spinal cord of mice was detected by Western blot.

Results

The mechanical sensitivity and dramatic thermal hyperalgesia to noxious plantar heat stimulation decreased significantly in mice at 7, 14, 21, 28, 35 and 42 days after stetafudine administration (all P < 0.01). The mechanical threshold in mice was significantly increased and thermal hyperalgesia was reversed in rapamycin + stavudine group at 7, 14, 21, 28, 35, 42 days after stetafudine administration compared with stavudine group (all P < 0.05); among which, on the 42nd day after stetafudine administration, the effect of rapamycin on mechanical allodynia [(8.41 ± 0.17) vs. (7.40 ± 0.13); t = 4.89, P = 0.034] and thermal hyperalgesia [(6.25 ± 0.16) vs. (4.43 ± 0.21); t = 13.32, P < 0.001] in mice were both at the maximum level, with significant differences. Western blot result showed that rapamycin significantly reversed the increased expression of phospho-mTOR in the spinal cord of mice caused by stavudine compared with stavudine group [0.72 ± 0.04) vs. (0.86 ± 0.03); t = 4.24, P = 0.045].

Conclusion

Rapamycin could relieve the neuropathic pain associated with NRTIs treatment of HIV by inhibiting the phosphorylation of mTOR.

图1 雷帕霉素对小鼠机械痛敏和热痛敏的影响
表1 雷帕霉素对小鼠机械痛敏和热痛敏的影响(± s
指标 只数 给药前 给药后7 d 给药后14 d 给药后21 d 给药后28天 给药后35天 给药后42天
PWMT(g)                
对照组 10 15.93 ± 0.53 15.63 ± 0.52 15.37 ± 0.46 15.68 ± 0.39 15.42 ± 0.36 15.38 ± 0.42 15.62 ± 0.33
  CMC-Na组 10 15.55 ± 0.29 15.44 ± 0.35 15.45 ± 0.34 15.36 ± 1.53 15.52 ± 0.35 15.50 ± 0.38 15.68 ± 0.34
  雷帕霉素+司他夫定组 10 15.49 ± 0.40 13.44 ± 0.25 10.51 ± 0.27 10.12 ± 0.29 9.51 ± 0.20 8.69 ± 0.20 8.41 ± 0.17
  司他夫定组 10 15.45 ± 0.30 12.35 ± 0.36 9.98 ± 0.50 9.16 ± 1.39 8.54 ± 0.22 7.64 ± 1.03 7.40 ± 0.13
F   1.45 20.63 34.68 35.76 22.56 18.96 29.18
P   0.180 0.008 0.004 0.003 0.007 0.008 0.005
t对照组 vs. CMC-Na组   0.48 1.21 0.56 0.89 0.79 1.16 1.23
P对照组 vs. CMC-Na组   0.640 0.28 0.59 0.42 0.56 0.31 0.23
t对照组 vs.雷帕霉素+司他夫定组   0.85 17.16 24.61 32.16 37.18 30.12 19.21
P对照组 vs.雷帕霉素+司他夫定组   0.490 0.009 0.007 0.004 0.003 0.005 0.008
t对照组 vs.司他夫定组   1.12 28.17 34.24 25.12 38.12 22.23 35.17
P对照组 vs.司他夫定组   0.380 0.006 0.004 0.007 0.003 0.007 0.003
tCMC-Na组 vs.司他夫定组   1.25 32.23 33.17 17.73 29.16 37.69 38.69
PCMC-Na组 vs.司他夫定组   0.210 0.004 0.004 0.009 0.005 0.003 0.002
tCMC-Na组 vs.雷帕霉素+司他夫定组   0.63 21.12 27.16 36.21 31.16 18.61 23.14
PCMC-Na组 vs.雷帕霉素+司他夫定组   0.580 0.008 0.006 0.003 0.005 0.009 0.007
t司他夫定组 vs.雷帕霉素+司他夫定组   1.56 5.71 1.64 4.12 4.36 5.06 4.89
P司他夫定组 vs.雷帕霉素+司他夫定组   0.190 0.026 0.12 0.046 0.042 0.031 0.034
PWTL(s)                
  对照组 10 10.14 ± 0.17 10.28 ± 0.18 10.15 ± 0.23 10.18 ± 0.20 10.27 ± 0.20 10.21 ± 0.33 10.25 ± 0.21
  CMC-Na组 10 10.59 ± 1.43 10.36 ± 0.14 10.43 ± 0.15 10.44 ± 0.20 10.39 ± 0.14 10.35 ± 0.24 10.39 ± 0.16
  雷帕霉素+司他夫定组 10 10.31 ± 0.17 8.56 ± 0.23 8.29 ± 0.14 7.88 ± 0.19 7.27 ± 0.11 6.90 ± 0.14 6.25 ± 0.16
  司他夫定组 10 10.39 ± 0.16 7.56 ± 0.35 7.12 ± 0.32 6.54 ± 0.20 5.89 ± 0.16 5.26 ± 0.23 4.43 ± 0.21
F   1.66 20.63 33.96 25.63 18.83 30.28 24.71
P   0.150 0.008 0.004 0.006 0.008 0.005 0.007
t对照组 vs. CMC-Na组   0.98 0.64 0.96 1.24 1.36 1.07 0.52
P对照组 vs. CMC-Na组   0.470 0.57 0.45 0.26 0.21 0.41 0.62
t对照组 vs.雷帕霉素+司他夫定组   0.86 18.72 23.17 28.81 22.18 33.69 31.21
P对照组 vs.雷帕霉素+司他夫定组   0.510 0.008 0.007 0.006 0.007 0.004 0.005
t对照组 vs.司他夫定组   1.18 29.12 27.18 32.38 19.23 21.17 35.56
P对照组 vs.司他夫定组   0.360 0.005 0.006 0.004 0.008 0.008 0.003
tCMC-Na组 vs.司他夫定组   1.28 30.16 34.71 28.63 22.32 18.12 25.07
PCMC-Na组 vs.司他夫定组   0.240 0.005 0.004 0.006 0.007 0.009 0.007
tCMC-Na组 vs.雷帕霉素+司他夫定组   1.61 31.12 26.18 20.26 15.71 21.21 24.16
PCMC-Na组 vs.雷帕霉素+司他夫定组   0.170 0.005 0.007 0.008 0.009 0.008 0.007
t司他夫定组 vs.雷帕霉素+司他夫定组   0.81 4.57 5.92 6.23 6.68 15.79 16.68
P司他夫定组 vs.雷帕霉素+司他夫定组   0.530 0.039 0.023 0.017 0.013 0.009 0.009
图2 雷帕霉素对小鼠脊髓组织中磷酸化mTOR蛋白表达的影响
表2 雷帕霉素对小鼠脊髓组织中磷酸化mTOR蛋白表达的影响(± s
[24]
Zhang X, Jiang N, Li J, et al. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic Paclitaxel[J]. Neurol Res,2019,41(1):52-59.
[25]
Kondo D, Saegusa H, Tanabe T. Involvement of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin/peroxisome proliferator-activated Receptor γ pathway for induction and maintenance of neuropathic pain[J]. Biochem Biophys Res Commun,2018,499(2):253-259.
[26]
Zhang J, Wang Y, Qi X. Systemic Rapamycin attenuates morphine-induced analgesic tolerance and hyperalgesia in mice[J]. Neurochem Res,2019,44(2):465-471.
[1]
Ganta KK, Chaubey B, Ganta KK, et al. Mitochondrial dysfunctions in HIV infection and antiviral drug treatment[J]. Expert Opin Drug Metab Toxicol,2019,15(12):1043-1052.
[2]
Udeze A, Odebisi-Omokanye M, Ajileye T. Cytomegalovirus infection among human immunodeficiency virus (HIV) infected individuals on highly active anti-retroviral therapy in north-central nigeria[J]. Afr Health Sci,2018,18(4):1057-1065.
[3]
Masocha W, Thomas A. Indomethacin plus minocycline coadministration relieves chemotherapy and antiretroviral drug-induced neuropathic pain in a cannabinoid receptors-dependent manner[J]. J Pharmacol Sci,2019,139(4):325-332.
[4]
Wang Y, Xu W, Yan Z, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways[J]. J Exp Clin Cancer Res,2018,37(1):63.
[5]
Lawrence J, Nho R. The Role of the Mammalian target of rapamycin (mTOR) in pulmonary fibrosis[J]. Int J Mol Sci,2018,19(3):778.
[6]
Schreiber KH, Arriola Apelo SI, Yu D, et al. A novel rapamycin analog is highly selective for mTORC1 in vivo[J]. Nat Commun,2019,10(1): 3194.
[7]
Liu Y, Qin X, Lu X, et al. Effects of inhibiting the PI3K/Akt/mTOR signaling pathway on the pain of sciatic endometriosis in a rat model[J]. Can J Physiol Pharmacol,2019,97(10):963-970.
[8]
Pillay P, Wadley AL, Cherry CL, et al. Psychological factors associated with painful versus non-painful HIV-associated sensory neuropathy[J]. AIDS Behav,2018,22(5):1584-1595.
[9]
Amaniti A, Sardeli C, Fyntanidou V, et al. Pharmacologic and non-pharmacologic interventions for HIV-neuropathy pain. A systematic review and a Meta-analysis[J]. Medicina (Kaunas),2019,55(12):762.
[10]
Scott W, Garcia Calderon Mendoza Del Solar M, Kemp H, et al. A qualitative study of the experience and impact of neuropathic pain in people living with HIV[J]. Pain,2020,161(5):970-978.
[11]
Aly E, Khajah MA, Masocha W. β-Caryophyllene, a CB2-receptor-selective phytocannabinoid, suppresses mechanical allodynia in a mouse model of antiretroviral-induced neuropathic pain[J]. Molecules,2019,25(1):106.
[12]
Yang Y, Liu X, Wu T, et al. Quercetin attenuates AZT-induced neuroinflammation in the CNS[J]. Sci Rep,2018,8(1):6194.
[13]
Octaviana F, Safri AY, Setiawan DD, et al. Neuropathic pain in HIV patients receiving ART without stavudine in an indonesia referral hospital[J]. J Neurol Sci,2019,397(2):146-149.
[14]
Chen H, Hu Y, Xie K, et al. Effect of Autophagy on allodynia, hyperalgesia and astrocyte activation in a rat model of neuropathic pain[J]. Int J Mol Med,2018,42(4):2009-2019.
[15]
Chen L, Yang G, Dong H, et al. Everolimus reverses palbociclib resistance in ER+ human breast cancer cells by inhibiting phosphatidylinositol 3-Kinase(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway[J]. Med Sci Monit,2019,25:77-86.
[16]
Hill EE, Kim JK, Jung Y, et al. Integrin alpha Ⅴ beta 3 targeted dendrimer-rapamycin conjugate reduces fibroblast-mediated prostate tumor progression and metastasis[J]. J Cell Biochem, 2018,119(10):8074-8083.
[17]
Li S, Guan S, Wang Y, et al. Nicotine inhibits rapamycin-induced pain through activating mTORC1/S6K/IRS-1-related feedback inhibition loop[J]. Brain Res Bull,2019,149(7):75-85.
[18]
Macone A, Otis JAD. Neuropathic pain[J]. Semin Neurol,2018,38(6):644-653.
[19]
Malcangio M. Role of the immune system in neuropathic pain[J]. Scand J Pain,2019,20(1):33-37.
[20]
Fernandes V, Sharma D, Vaidya S, et al. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges[J]. Expert Opin Ther Targets,2018,22(2):131-142.
[21]
Liu Y, Latremoliere A, Li X, et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections[J]. Nature,2018,561(7724):547-550.
[22]
Cho C, Michailidis V, Martin LJ. Revealing brain mechanisms of mTOR-mediated translational regulation: implications for chronic pain[J]. Neurobiol Pain,2018,4:27-34.
[23]
Nguyen LS, Vautier M, Allenbach Y, et al. Sirolimus and mTOR inhibitors: A review of side effects and specific management in solid organ transplantation[J]. Drug Saf,2019,42(7):813-825.
[1] 吴茜, 邓力, 练士贤, 张华, 江颖, 张宏伟. 伴人类免疫缺陷病毒感染乳腺癌患者的临床病理特征与预后的相关性研究[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 151-156.
[2] 张玉, 薛文瑞, 王鑫, 李旭瑜, 王旭东, 袁鹏飞, 梁雨润, 韩志兴, 张海建, 刘庆军, 纪世琪. 人类免疫缺陷病毒感染合并膀胱癌14例临床特点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 354-358.
[3] 崔贵香, 丁晓燕, 褚盈晖, 孙代, 吴海燕, 陈京龙. 57例人类免疫缺陷病毒感染合并Burkkit淋巴瘤患者的临床分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 102-109.
[4] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[5] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[6] 汤艳芬, 赵雯, 马成杰, 刘刚, 陈奇, 刘菁, 薛天娇, 刘岩岩, 陈融佥, 王宇. 人类免疫缺陷病毒感染合并鸟分枝杆菌复合群病临床特点[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 348-353.
[7] 田家庚, 李熳, 王赜煜, 赵莹, 张志广. 胃饥饿素介导幽门螺杆菌相关消化不良的动物实验研究[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 313-319.
[8] 魏春波, 万钢, 许东梅, 赵兴云, 袁柳凤, 吴焱, 伦文辉. 60例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征合并神经梅毒患者临床和实验室特征[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 254-260.
[9] 杜娟, 宋波, 颜晓明, 牛佳鸣, 林元龙, 陈晓红, 李锦, 梁晗, 张铮, 李宇欧, 王福祥, 邵冰. 外周血单个核细胞内人类免疫缺陷病毒DNA和RNA定量对病毒转录活性的区分[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 165-171.
[10] 中国器官移植发展基金会器官移植受者健康管理专家委员会, 中国医师协会器官移植医师分会, 中华医学会器官移植学分会, 国家肝脏移植质控中心. 肝移植受者雷帕霉素靶蛋白抑制剂临床应用中国专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(04): 193-204.
[11] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[12] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[13] 张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.
[14] 王希岗, 张波, 李鸣, 高敏, 薛建新. 神经外科手术部位感染在HIV感染者与非HIV感染者中的临床差异[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 228-233.
[15] 刘新献, 王雅琪, 周斌, 郭严延. 雷帕霉素在兔腐蚀性食管炎性狭窄早期干预中的意义[J]. 中华介入放射学电子杂志, 2023, 11(04): 324-329.
阅读次数
全文


摘要