| [1] |
Schlapbach LJ, Watson RS, Sorce LR, et al. International consensus criteria for pediatric sepsis and septic shock[J]. JAMA,2024,331(8):665-674.
|
| [2] |
Martin-Loeches I, Singer M, Leone M. Sepsis: key insights, future directions, and immediate goals. A review and expert opinion[J]. Intensive Care Med,2024,50(12):2043-2049.
|
| [3] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet,2020,395(10219):200-211.
|
| [4] |
邵慧娟, 王炎, 张宏伟, 等. 脓毒症患者28 d死亡危险因素分析及预测模型的构建与验证[J]. 中华危重病急救医学,2024,36(5):478-484.
|
| [5] |
Cui SH, Liang CY, Hao YF. Analysis of risk factors affecting the prognosis of patients with sepsis and construction of nomogram prediction model[J]. Eur Rev Med Pharmacol Sci,2024,28(6):2409-2418.
|
| [6] |
Kamath S, Hammad Altaq H, Abdo T. Management of sepsis and septic shock: What have we learned in the last two decades?[J]. Microorganisms,2023,11(9):2231.
|
| [7] |
Lee JH, Kim SH, Jang JH, et al. Clinical usefulness of biomarkers for diagnosis and prediction of prognosis in sepsis and septic shock[J]. Medicine (Baltimore),2022,101(48):e31895.
|
| [8] |
Ramos Corrêa Pinto L, Azzolin KO, Lucena AF, et al. Septic shock: Clinical indicators and implications to critical patient care[J]. J Clin Nurs,2021,30(11-12):1607-1614.
|
| [9] |
Suh JW, Kim MJ, Kim JH. Risk factors of septic shock development and thirty-day mortality with a predictive model in adult candidemia patients in intensive care units[J]. Infect Dis (Lond),2021,53(12):908-919.
|
| [10] |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016[J]. Intensive Care Med,2017,43(3):304-377.
|
| [11] |
Qiu X, Lei YP, Zhou RX. SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis[J]. Expert Rev Anti Infect Ther,2023,21(8):891-900.
|
| [12] |
Zhang G, Shao F, Yuan W, et al. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers[J]. Eur J Med Res,2024,29(1):156.
|
| [13] |
Sakr Y, Jaschinski U, Wittebole X, et al. Sepsis in Intensive Care Unit patients: worldwide data from the Intensive Care over Nations Audit[J]. Open Forum Infect Dis,2018,5(12):ofy313.
|
| [14] |
Carsetti A, Antolini R, Casarotta E, et al. Shock index as predictor of massive transfusion and mortality in patients with trauma: a systematic review and meta-analysis[J]. Crit Care,2023,27(1):85.
|
| [15] |
Moreno R, Rhodes A, Piquilloud L, et al. The sequential organ failure assessment (SOFA) score: has the time come for an update?[J]. Crit Care,2023,27(1):15.
|
| [16] |
Liu XZ, Duan M, Huang HD, et al. Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: a multicenter retrospective study[J]. Front Endocrinol (Lausanne),2023,14:1184190.
|
| [17] |
Nofal MA, Shitawi J, Altarawneh HB, et al. Recent trends in septic shock management: a narrative review of current evidence and recommendations[J]. Ann Med Surg (Lond),2024,86(8):4532-4540.
|
| [18] |
Bauer M, Gerlach H, Vogelmann T, et al. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019--results from a systematic review and Meta-analysis[J]. Crit Care,2020,24(1):239.
|
| [19] |
Namgung M, Ahn C, Park Y, et al. Mortality among adult patients with sepsis and septic shock in Korea: a systematic review and meta-analysis[J]. Clin Exp Emerg Med,2023,10(2):157-171.
|
| [20] |
汪洋, 陈上仲, 胡才宝, 等. 基于随机森林法的严重脓毒症/脓毒性休克预后评估模型对患者28 d死亡的预测价值[J]. 中华危重病急救医学,2017,29(12):1071-1076.
|
| [21] |
李少军, 郭鹏飞, 唐甜, 等. 开发MIMIC-Ⅲ脓毒性休克患者死亡风险预测模型的队列研究[J]. 中华危重病急救医学,2022,34(11):1127-1131.
|
| [22] |
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med,2019,25(1):44-56.
|
| [23] |
Hu C, Li L, Huang W, et al. Interpretable machine learning for early prediction of prognosis in sepsis: A discovery and validation study[J]. Infect Dis Ther,2022,11(3):1117-1132.
|
| [24] |
Alabi RO, Youssef O, Pirinen M, et al. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review[J]. Artif Intell Med,2021,115:102060.
|
| [25] |
Aghakhani A, Yousefi M, Yekaninejad MS. Machine learning models for predicting sudden sensorineural hearing loss outcome: A systematic review[J]. Ann Otol Rhinol Laryngol,2024,133(3):268-276.
|
| [26] |
Hu Q, Chen Y, Zou D, et al. Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis[J]. Front Pharmacol,2024,15:1497397.
|
| [27] |
Ma JH, You SF, Xue JS, et al. Computer-aided diagnosis of cervical dysplasia using colposcopic images[J]. Front Oncol,2022,12:905623.
|
| [28] |
Matsumoto T, Fukuzawa M, Itoi T, et al. Targeted metabolomic profiling of plasma samples in gastric cancer by liquid chromatography-mass spectrometry[J]. Digestion,2023,104(2):97-108.
|
| [29] |
Tang F, Zhao XL, Xu LY, et al. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome[J]. Biomed Pharmacother,2024,178:117180.
|
| [30] |
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis[J]. Ann Intensive Care,2024,14(1):147.
|
| [31] |
Ogica A, Burdelski C, Rohde H, et al. Necrotizing soft tissue infections in intensive care[J]. J Intensive Care Med,2022,37(3):393-400.
|
| [32] |
连洁, 谈朦, 陈隆望, 等. 血管内皮-钙黏蛋白在脓毒症患者病情严重程度评估中的价值[J]. 中华危重病急救医学,2022,34(8):808-813.
|
| [33] |
黄琴, 廖晓斌, 吴贵全. 急性生理与慢性健康Ⅱ评分联合血清降钙素原, D-二聚体, 乳酸清除率预测重症脓毒症患者预后不良[J/CD]. 中华实验和临床感染病杂志(电子版),2021,15(6):394-401.
|
| [34] |
汪洋, 陈上仲, 胡才宝, 等. 凝血功能异常在血小板减少导致脓毒性休克患者死亡中的作用[J]. 中华危重病急救医学,2023,35(12):1241-1244.
|