切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 185 -191. doi: 10.3877/cma.j.issn.1674-1358.2022.03.007

论著

新生儿重症监护室多重耐药菌感染临床分析及高危因素
李管明1, 张霭润1, 王启闯1, 李宁宁2, 庄思齐1, 房晓祎1,()   
  1. 1. 518107 深圳市,中山大学附属第七医院新生儿科
    2. 518107 深圳市,中山大学附属第七医院科研中心
  • 收稿日期:2021-08-27 出版日期:2022-06-15
  • 通信作者: 房晓祎
  • 基金资助:
    2020年国家自然科学基金面上项目(No. 82072766); 2020年深圳市科技计划项目基础研究面上项目(No. JCYJ20190809145409829); 2020年深圳市医疗卫生三名工程项目(No. SZSM202011004)

Clinical characteristics and factors of multiple drug-resistant organism infection in neonatal intensive care unit

Guanming Li1, Airun Zhang1, Qichuang Wang1, Ningning Li2, Siqi Zhuang1, Xiaoyi Fang1,()   

  1. 1. Department of Neonatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
    2. Department of Science and Research Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
  • Received:2021-08-27 Published:2022-06-15
  • Corresponding author: Xiaoyi Fang
引用本文:

李管明, 张霭润, 王启闯, 李宁宁, 庄思齐, 房晓祎. 新生儿重症监护室多重耐药菌感染临床分析及高危因素[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 185-191.

Guanming Li, Airun Zhang, Qichuang Wang, Ningning Li, Siqi Zhuang, Xiaoyi Fang. Clinical characteristics and factors of multiple drug-resistant organism infection in neonatal intensive care unit[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2022, 16(03): 185-191.

目的

探讨新生儿重症监护室(NICU)新生儿多重耐药菌(MDRO)感染的高危因素及其预防策略。

方法

收集2019年1月至2020年12月中山大学附属第七医院NICU住院新生儿中病原体培养阳性患儿的临床资料,其中检出MDRO的新生儿为MDRO组(25例),检出非MDRO的新生儿为非MDRO组(45例),回顾性分析MDRO构成比、菌种、检出部位及耐药情况,并分析两组新生儿的疾病及转归,采用单因素分析和多因素Logistic回归分析MDRO感染的高危因素。

结果

714份送检标本中分离出细菌70株,其中MDRO 25株(35.7%)。MDRO中革兰阳性球菌15株(60.0%),其中凝固酶阴性葡萄球菌12株(48%),耐甲氧西林金黄色葡萄球菌3株(12.0%);革兰阴性杆菌10株(40.0%),其中产超广谱β-内酰胺酶大肠埃希菌6株(24.0%)。单因素分析显示两组新生儿的绒毛膜羊膜炎发生率[16(64.0%) vs. 17(37.7%):χ2 = 4.435、P = 0.035]、联合使用2种以上抗菌药物[10(40.0%) vs. 8(17.7%):χ2 = 4.155、P = 0.042]、肠外营养时间超过2周[15(60.0%) vs. 15(33.3%):χ2 = 4.667、P = 0.031]差异均有统计学意义。多因素Logistic回归分析显示,绒毛膜羊膜炎为NICU新生儿MDRO感染的独立危险因素(OR = 2.899、95%CI:1.007~8.350、χ2 = 3.889、P = 0.049)。MDRO组患儿主要感染疾病为新生儿败血症[6例(24.0%)]和新生儿肺炎[6例(24.0%)];非MDRO组患儿主要感染疾病为化脓性脑膜炎[2例(4.4%)]和新生儿肺炎[2例(4.4%)]。MDRO组患儿感染率高于非MDRO组[14(56.0%) vs. 5(11.1%):χ2 = 16.376、P < 0.001],两组患儿住院转归[24(96.0%) vs. 43(95.5%):χ2 = 0.000、P = 1.000]、住院时间[21.0(7.5,37.0)d vs. 8.0(4.0,35.5)d:Z =-1.793、P = 0.073]以及住院费用[3.588(1.0395,8.7050)万元vs. 1.3713(0.7287,7.6127)万元:Z =-1.189、P = 0.234]差异均无统计学意义。

结论

NICU患儿MDRO感染率较非MDRO高,绒毛膜羊膜炎为NICU新生儿MDRO感染独立危险因素。应从积极处理母亲羊膜炎、围产期抗菌药物合理使用、加强感染控制等方面进行NICU新生儿MDRO感染管理。

Objective

To investigate the high-risk factors and prevention strategies of multiple drug-resistant organisms (MDRO) infection in neonatal intensive care unit (NICU).

Methods

Clinical data of the neonates with positive pathogen cultures who were hospitalized in the NICU of the Seventh Affiliated Hospital of Sun Yat-sen University from January 2019 to December 2020 were collected. The 25 neonates with positive MDRO culture results were assigned as MDRO group, while 45 neonates with non-MDRO culture results were assigned as non-MDRO group. The composition ratio, strain, detected sites and drug resistance of MDRO were analyzed, retrospectively, and the disease and outcome of both neonatal groups were compared. The high-risk factors for MDRO infection were analyzed by Univariate analysis and multivariate Logistic regression analysis.

Results

Total of 70 strains of pathogens were isolated from 714 samples, among which, 25 strains (35.7%) were MDRO. 15 strains (60.0%) of MDRO were Gram-positive cocci, among which, 12 strains (48.0%) were coagulase-negative Staphylococci and 3 strains (12.0%) were methicillin-resistant Staphylococcus aureus. 10 strains were Gram-negative bacilli (40%), among which, 6 strains (24.0%) were Escherichia coli producing extended-spectrum beta-lactamase. Univariate analysis showed that chorioamnionitis [16 (64.0%) vs. 17 (37.7%): χ2 = 4.435, P = 0.035], combined usage of more than two antibiotics [10 (40.0%) vs. 8 (17.7%): χ2 = 4.155, P = 0.042] and administration of parenteral nutrition for longer than 2 weeks [15 (60.0%) vs.15 (33.3%): χ2 = 4.667, P = 0.031] of the two groups were with significant differences. Logistic regression analysis showed that chorioamnionitis was an independent risk factor for neonatal with MDRO infection in NICU [OR = 2.899, 95%CI: 1.007-8.350), χ2 = 3.889, P = 0.049]. The main infectious diseases of neonates in MDRO group were sepsis (6/25, 24.0%) and pneumonia (6/25, 24.0%), while those in non-MDRO group were purulent meningitis (2/45, 4.4%) and pneumonia (2/45, 4.4%). The infection rate of neonates in MDRO group was significantly higher than that of non-MDRO group [14 (56.0%) vs. 5 (11.1%): χ2 = 16.376, P < 0.001]. There was no significant difference between the two groups for prognosis [24 (96.0%) vs. 43 (95.5%): χ2 = 0.000, P = 1.000], hospital duration [21.0 (7.5, 37.0) days vs. 8.0 (4.0, 35.5) days, Z =-1.793, P = 0.073] and cost [¥35 880 (10 395, 87 050) vs. ¥13 713 (7 287, 76 127): Z =-1.189, P = 0.234].

Conclusions

The infection rate of neonates with MDRO was higher than that of neonates with non-MDRO. Chorioamnionitis was an independent risk factor for MDRO infection in NICU neonates. The management of MDRO infection in NICU neonates should be conducted by active handling of maternal amnionitis, rational use of perinatal antibiotics, and strengthening infection control.

表1 MDRO组和非MDRO组新生儿的一般资料
图1 NICU新生儿病原体培养阳性菌种分布及MDRO占比
表2 NICU新生儿培养阳性病原体分类及其检出部位[例(%)]
图2 NICU住院新生儿病原体培养阳性中多重耐药菌构成
表3 NICU新生儿培养阳性病原体中主要革兰阴性杆菌耐药率[株(%)]
表4 NICU新生儿培养阳性病原体中主要革兰阳性球菌耐药率[株(%)]
表5 NICU新生儿MDRO的影响因素
表6 NICU新生儿MDRO相关因素Logistic回归分析
表7 MDRO组和非MDRO组新生儿住院相关指标
[1]
Aldawsari A, Tawfik K, Al-Zaagi I Sr. Antimicrobial-resistant bacteria and prescription of antibiotics at a Tertiary Care Hospital in Riyadh, Saudi Arabia[J]. Cureus,2020,12(12):e12098.
[2]
Magira EE, Islam S, Niederman MS. Multi-drug resistant organism infections in a medical ICU: Association to clinical features and impact upon outcome[J]. Med Intensiva (Engl Ed),2018,42(4):225-234.
[3]
Wattal C, Kler N, Oberoi JK, et al. Neonatal sepsis: mortality and morbidity in neonatal sepsis due to multidrug-resistant (MDR) organisms: Part 1[J]. Indian J Pediatr,2020,87(2):117-121.
[4]
Li JY, Chen SQ, Yan YY, et al. Identification and antimicrobial resistance of pathogens in neonatal septicemia in China-A meta-analysis[J]. Int J Infect Dis,2018,71(7):89-93.
[5]
Dawood Y, Tala S, Samah A, et al. Clinical characteristics and epidemiology of sepsis in the neonatal intensive care unit in the era of multi-drug resistant organisms: A retrospective review[J]. Pediatr Neonatol,2018,59(1):35-41.
[6]
CLSI. Performance Standards for Antimicrobial Susceptibility Testing[M]. 28th ed. CLSI Supplement M100, Wayne, P.A.: Clinical and Laboratory Standards Institute, 2018.
[7]
WHO. Critically important antimicrobials for human medicine[M]. 6th revision. Geneva: World Health Organization. 2019:1.
[8]
World Bank. Drug-resistant infections: a threat to our economic future: final report[M]. Washington, D.C.: The World Bank,2017:15-22.
[9]
Akpan MR, Isemin NU, Udoh AE, et al. Implementation of antimicrobial stewardship programmes in African countries: a systematic literature review[J]. J Glob Antimicrob Resist,2020,22:317-324.
[10]
Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge[J]. Lancet,2016,387(10014): 168-175.
[11]
唐玲玲,刁福强,赖卫明, 等. 新生儿产ESBLs菌主动筛查及危险因素分析[J]. 中国妇幼保健,2019,34(13):3007-3009.
[12]
Dias M, Saleem J. Surface colonization and subsequent development of infections with multi drug resistant organisms in a neonatal intensive care unit[J]. Ann Clin Microbiol Antimicrob,2019,18(1):12.
[13]
van der Hoeven A, Bekker V, Jansen SJ, et al. Impact of transition from open bay to single room design neonatal intensive care unit on multidrug-resistant organism colonization rates[J]. J Hosp Infect,2021,120:90-97.
[14]
黄晓,杨慧,张楠. 新生儿重症监护室多重耐药菌感染情况分析[J]. 当代医学,2020,26(33):16-18.
[15]
Marincola G, Liong O, Schoen C, et al. Antimicrobial resistance profiles of coagulase-negative Staphylococci in community-based healthy individuals in Germany[J]. Front Public Health,2021,9:684456.
[16]
Al-Haqan A, Boswihi SS, Pathan S, et al. Antimicrobial resistance and virulence determinants in coagulase-negative staphylococci isolated mainly from preterm neonates[J]. PLoS One,2020,15(8):e0236713.
[17]
全国细菌耐药检测网. 2020年全国细菌耐药监测报告(简要版)[EB/OL]. 2021-11-17.

URL    
[18]
Chaurasia S, Sivanandan S, Agarwal R, et al. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance[J]. BMJ,2019,364:k5314.
[19]
刘尊杰,陈霞,李娟, 等. 新生儿重症监护病房早期新生儿肠道细菌定植影响因素及抗生素耐药性研究[J]. 中华新生儿科杂志,2020,35(2):118-122.
[20]
Pokhrel B, Koirala T, Shah G, et al. Bacteriological profile and antibiotic susceptibility of neonatal sepsis in neonatal intensive care unit of a tertiary hospital in Nepal[J]. BMC Pediatr,2018,18(1):208.
[21]
Khorsandi K, Keyvani-Ghamsari S, Khatibi-Shahidi F, et al. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles[J]. J Drug Target,2021,29(9):941-959.
[22]
Glover AV, Battarbee AN, Heine RP, et al. Association of treatment of chorioamnionitis with non-beta lactam antibiotics and postcesarean infectious morbidity[J]. Am J Perinatol,2020,37(5):461-466.
[23]
Romagano MP, Fofah O, Swaminarayan D, et al. Maternal antepartum antibiotic administration and patterns of bacterial resistance in early preterm neonates[J]. J Matern Fetal Neonatal Med,2020,4:1-5.
[24]
Iwu-Jaja CJ, Jaca A, Jaja IF, et al. Preventing and managing antimicrobial resistance in the African region: A scoping review protocol[J]. PLoS One,2021,16(7):e0254737.
[25]
李亚山,李德璇,黄艳梅, 等. 抗菌药物用药频度与铜绿假单胞菌和鲍曼不动杆菌耐药率的相关性[J/CD]. 中华实验和临床感染病杂志(电子版),2019,13(4):300-304.
[26]
Patra SK, Mishra SB, Rath A, et al. Study of antimicrobial utilization and cost of therapy in medicine intensive care unit of a tertiary care hospital in Eastern India[J]. Indian J Crit Care Med,2020,24(10):938-942.
[27]
Annamalai A, Gupta V, Jain S, et al. Increasing resistance to reserve antibiotics: The experience of a tertiary level neonatal intensive care unit[J]. J Trop Pediatr,2021,67(1):fmaa086.
[28]
尹建春,刘云,杨红欣. 新生儿医院感染相关因素分析与对策[J]. 中华全科医学,2013,8(11):1248-1249.
[1] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[2] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 陈樱, 陈艳莉. 高龄孕妇心率变异性原因及围产结局分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 295-301.
[5] 李聪, 徐艳, 吴铭, 丁瑞东, 王军. 极低出生体重儿出生时血清25-羟维生素D水平与其生后早期喂养不耐受关系的临床分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 309-314.
[6] 张霭润, 招嘉樑, 李管明, 李嘉鸿, 陈静蓉, 王兰, 庄思齐, 房晓祎. 早产儿RhE合并Rhc溶血病1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 93-99.
[7] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[8] 陈滔, 罗洪, 周进军. 老年食管癌单纯放疗及同期放化疗患者急性不良反应影响因素分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 405-407.
[9] 王晓丹, 王媛, 崔向宇, 任晓磊. 上尿路结石内镜手术后尿源性脓毒血症病原菌耐药及死亡高危因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 611-615.
[10] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[11] 冀京雷, 李秀丽, 贾亚男, 冯会敏, 刘丽艳. 改良aEEG评分评估高危足月低体质量新生儿脑损伤的效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 165-169.
[12] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 刘锦秀, 王晓伟, 张同乐, 姜爱华. 青年社会体检者、医务工作者及心肌梗死患者心血管疾病高危因素的对比研究[J]. 中华临床医师杂志(电子版), 2023, 17(03): 249-254.
阅读次数
全文


摘要