[1] |
Li R, Li H, Qi Z. Bacillary and Amebic Dysentery[M]. Radiology of Infectious Diseases,2015:11-36.
|
[2] |
Li ZJ, Zhang XJ, Hou XX, et al. Nonlinear and threshold of the association between meteorological factors and bacillary dysentery in Beijing, China[J]. Epidemiol Infect,2015,143(16):1-10.
|
[3] |
Brown DR. Catecholamine-directed epithelial cell interactions with bacteria in the intestinal mucosa[M]//. Microbial endocrinology: Interkingdom signaling in infectious disease and health. Springer International Publishing,2016:79-99.
|
[4] |
Björkman J, Švec D, Lott E, et al. Differential amplicons (ΔAmp)--a new molecular method to assess RNA integrity[J]. Biomol Detect Qua,2016,6(C):4-12.
|
[5] |
Eichmeier A, Kiss T, Cechova J. Evaluation of three approaches for the measurement of RNA integrity, concentration and purity in tissues of apricot flower buds[J]. Int J Sci Res,2014,3(3):157-160.
|
[6] |
Denisov V. Determination of the integrity of RNA: EP, US9150909[P]. 2015.
|
[7] |
Sidova M, Tomankova S, Abaffy P, et al. Effects of post-mortem, and physical degradation on RNA integrity and quality[J]. Biomol Detect Qua,2015, 5(C):3-9.
|
[8] |
徐婷, 金顺鑫, 王潇, 等. 细菌外排泵系统acrAB-tolC的研究进展[J]. 黑龙江畜牧兽医,2016(9):92-95.
|
[9] |
程玉谦, 祁伟. 肠杆菌科细菌外排泵AcrAB-TolC调控机制的研究进展[J]. 山东医药,2015(21):95-97.
|
[10] |
Du D, Wang Z, James NR, et al. Structure of the AcrAB-TolC multidrug efflux pump[J]. Nature,2014,509(7501):512-515.
|
[11] |
Long C. First description of plasmid-mediated quinolone resistance determinants and β-lactamase encoding genes in non-typhoidal Salmonella, isolated from humans, one companion animal and food in Romania[J]. Gut Pathogens,2015,7(16):1-11.
|
[12] |
付启云, 郑绍同. 常见医院感染病原菌对喹诺酮类药物的耐药性[J]. 中国感染控制杂志,2013,12(6):457-460.
|
[13] |
Kao CY, Wu HM, Lin WH, et al. Plasmid-mediated quinolone resistance determinants in quinolone-resistant Escherichia coli isolated from patients with bacteremia in a university hospital in Taiwan, 2001-2015[J]. Sci Rep,2016,6(10):32281-32288.
|
[14] |
杨贤. 志贺菌外排泵AcrAB-TolC及其调控基因突变与氟喹诺酮耐药性关系的研究[D]. 天津医科大学,2015.
|
[15] |
王威, 邵龙, 郑娜, 等. 外排转运蛋白介导的抗真菌药物耐药研究进展[J]. 现代生物医学进展,2017,17(12):2377-2380.
|
[16] |
陈元旺. 细菌AcrAB-TolC外排泵在幽门螺杆菌耐药中的作用及机制[D]. 南昌大学医学院,2014.
|
[17] |
姚明晓. AcrAB-TolC主动外排泵与宋内志贺菌多重耐药关系的研究[D]. 泰山医学院, 2014.
|
[18] |
程玉谦, 祁伟. 肠杆菌科细菌外排泵AcrAB-TolC调控机制的研究进展[J]. 山东医药,2015(21):95-97.
|
[19] |
Piddock LJ, White DG, Gensberg K, et al. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium[J]. Antimicrob Agents Chem,2000,44(11):3118-3121.
|
[20] |
Giraud E, Cloeckaert AD, Chaslus DE. Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar typhimurium[J]. Antimicrob Agents Chem,2000,44(5):1223-1228.
|
[21] |
杨海燕, 段广才, 郗园林. 主动外排系统acrAB在志贺菌中分布和表达[J]. 中国公共卫生,2005,21(6):685-687.
|
[22] |
蒋燕群, 李俐, 钱燕斐. 大肠埃希菌和肺炎克雷伯菌外排泵转录水平与耐药的关系[J]. 检验医学,2011,26(1):51-55.
|
[23] |
Kim J S, Jeong H, Song S, et al. Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode[J]. Molecules & Cells, 2015, 38(2):180-186.
|
[24] |
Weeks JW, Bavro VN, Misra R. Genetic assessment of the role of AcrB β-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of Escherichia coli[J]. Mol Microbiol,2014, 91(5):965-975.
|
[25] |
Hayashi K, Ryosuke N, Sakurai K, et al. AcrB-AcrA fusion proteins that act as multidrug efflux transporters[J]. J Bacteriol,2015,198(2):JB.00587-15.
|
[26] |
Janganan TK, Bavro VN, Li Z, et al. Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3:6:3[J]. J Biol Chem,2011,286(30):26900-26912.
|