切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 108 -112. doi: 10.3877/cma.j.issn.1674-1358.2024.02.007

短篇论著

283株淋球菌对七种常见抗菌药物的耐药性分析
袁柳凤1, 徐文绮2, 朱小宇2, 王慧珠3, 伦文辉1,()   
  1. 1. 100015 北京市,首都医科大学附属北京地坛医院皮肤性病科
    2. 210042 南京市,中国疾病预防控制中心性病控制中心
    3. 100015 北京市,首都医科大学附属北京地坛医院检验科
  • 收稿日期:2023-06-27 出版日期:2024-04-15
  • 通信作者: 伦文辉
  • 基金资助:
    北京市医院管理中心"青苗"计划专项经费资助(No. QML20201803)

Resistance of 283 Neisseria gonorrhoeae strains to seven antimicrobial agents

Liufeng Yuan1, Wenqi Xu2, Xiaoyu Zhu2, Huizhu Wang3, Wenhui Lun1,()   

  1. 1. Department of Dermatology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    2. National Center for Sexually Transmitted Disease Control, China Center for Disease Control and Prevention, Nanjing 210042, China
    3. Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2023-06-27 Published:2024-04-15
  • Corresponding author: Wenhui Lun
引用本文:

袁柳凤, 徐文绮, 朱小宇, 王慧珠, 伦文辉. 283株淋球菌对七种常见抗菌药物的耐药性分析[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 108-112.

Liufeng Yuan, Wenqi Xu, Xiaoyu Zhu, Huizhu Wang, Wenhui Lun. Resistance of 283 Neisseria gonorrhoeae strains to seven antimicrobial agents[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2024, 18(02): 108-112.

目的

探讨淋球菌对头孢曲松等7种抗菌药物的耐药性,为指导淋病临床治疗提供依据。

方法

收集2015年1月至2021年12月首都医科大学附属北京地坛医院皮肤性病科临床分离的283株淋球菌,采用琼脂稀释法测定淋球菌对我国淋球菌耐药监测的7种抗菌药物,即大观霉素、头孢曲松、头孢克肟、阿奇霉素、四环素、青霉素和环丙沙星的最低抑菌浓度(MIC),参考世界卫生组织(WHO)及欧洲抗菌药物敏感性试验委员会(EUCAST)的标准判定其敏感性。菌株数和菌株所占比例分别采用频数和率进行统计描述,耐药率的比较采用Pearson卡方检验或Fisher’s确切概率法进行分析。

结果

283株淋球菌中大观霉素耐药株1株(0.4%),头孢曲松耐药株27株(9.5%),头孢克肟耐药株56株(19.8%),阿奇霉素耐药株39株(13.8%),四环素耐药株279株(98.6%),青霉素耐药株185株(65.4%),环丙沙星耐药株279株(98.6%)。283株淋球菌中同时对四环素、环丙沙星及青霉素耐药菌株为184株(65.0%),其中33株(11.7%)同时对阿奇霉素耐药。大观霉素耐药株(1株)对头孢曲松敏感。头孢曲松耐药株(27株)均对四环素和环丙沙星耐药,其中25株菌同时对头孢克肟耐药。2021年头孢曲松耐药率最高(17.2%),与2016年相比差异有统计学意义(χ2 = 4.664,P = 0.031),与其他年份两两比较差异无统计学意义(P均> 0.05)。2021年阿奇霉素耐药率最高(39.7%),与2016至2019年两两比较差异均有统计学意义(2016年:χ2 = 13.666、P < 0.001;2017年:χ2 = 24.264、P < 0.001;2018年:χ2 = 20.846、P < 0.001;2019年:χ2 = 10.805、P = 0.001)。

结论

头孢曲松和大观霉素可作为淋病一线治疗药物,但仍需密切监测淋球菌的耐药性变化。

Objective

To analyze the resistance of Neisseria gonorrhoeae to seven antimicrobial agents such as ceftriaxone, so as to provide basis for clinical treatment of gonorrhea.

Methods

Total of 283 strains of Neisseria gonorrhoeae were isolated from January 2015 to December 2021 in Department of Dermatology, Beijing Ditan Hospital, Capital Medical University. Minimum inhibitory concentration (MIC) of spectinomycin, ceftriaxone, cefixime, azithromycin, tetracycline, penicillin and ciprofloxacin were determined by agar dilution method. The resistance to these seven antimicrobial agents of Neisseria gonorrhoeae were regularly monitored and the sensitivity was determined according to the World Health Organization (WHO) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards. The number and proportion of strains were statistically described by frequency and rate, and the resistance rates between years were compared by Pearson Chi-square test or Fisher’s exact probability method.

Results

Among the 283 strains, 1 strain (0.4%) was resistant to spectinomycin, 27 strains (9.5%) were resistant to ceftriaxone, 56 strains (19.8%) were resistant to cefixime, 39 strains (13.8%) were resistant to azithromycin, 279 strains (98.6%) were resistant to tetracycline, 185 strains (65.4%) were resistant to penicillin and 279 strains (98.6%) were resistant to ciprofloxacin. Among the 283 strains, 184 strains (65.0%) were multidrug-resistant to tetracycline, ciprofloxacin and penicillin, among which 33 strains (11.7%) were resistant to azithromycin. The spectinomycin-resistant strain was sensitive to ceftriaxone. All ceftriaxone-resistant strains were multidrug-resistant to tetracycline and ciprofloxacin, among which 25 strains were resistant to cefixime. The resistance rate of ceftriaxone in 2021 was the highest (17.2%), and the difference was statistically significant compared with that of 2016 (χ2 = 4.664, P = 0.031), but there was no statistically significant difference compared with other years (all P > 0.05). The resistance rate of azithromycin in 2021 was the highest (39.7%), and the difference was statistically significant compared with those of 2016 to 2019 (2016: χ2 = 13.666, P < 0.001; 2017: χ2 = 24.264, P < 0.001; 2018: χ2 = 20.846, P < 0.001; 2019: χ2 = 10.805, P = 0.001).

Conclusions

Ceftriaxone and spectinomycin can be used as first-line treatment for gonorrhea, but the trend of antimicrobial resistance of Neisseria gonorrhoeae needs to be regularly monitored.

表1 7种抗菌药物敏感性判断标准(mg/L)
表2 本院2015至2021年283株淋球菌对7种抗菌药物的耐药性[株(%)]
抗菌药物 敏感性 2015年(8株) 2016年(37株) 2017年(83株) 2018年(54株) 2019年(25株) 2020年(18株) 2021年(58株) 合计(283株)
大观霉素 敏感 8(100.0) 37(100.0) 82(98.8) 54(100.0) 25(100.0) 18(100.0) 58(100.0) 282(99.6)
低敏 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
耐药 0(0.0) 0(0.0) 1(1.2) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 1(0.4)
头孢曲松 敏感 8(100.0) 36(97.3) 74(89.2) 49(90.7) 2 4(96.0) 17(94.4) 48(82.8) 256(90.5)
耐药 0(0.0) 1(2.7) 9(10.8) 5(9.3) 1(4.0) 1(5.6) 10(17.2) 27(9.5)
头孢克肟 敏感 8(100.0) 34(91.9) 69(83.1) 41(75.9) 18(72.0) 15(83.3) 42(72.4) 227(80.2)
耐药 0(0.0) 3(8.1) 14(16.9) 13(24.1) 7(28.0) 3(16.7) 16(27.6) 56(19.8)
阿奇霉素 敏感 5(62.5) 33(89.2) 66(79.5) 51(94.4) 21(84.0) 10(55.6) 10(17.2) 196(69.2)
低敏 1(12.5) 2(5.4) 12(14.5) 1(1.9) 3(12.0) 4(22.2) 25(43.1) 48(17.0)
耐药 2(25.0) 2(5.4) 5(6.0) 2(3.7) 1(4.0) 4(22.2) 23(39.7) 39(13.8)
四环素 敏感 0(0.0) 0(0.0) 2(2.4) 0(0.0) 1(4.0) 0(0.0) 1(1.7) 4(1.4)
耐药 8(100.0) 37(100.0) 81(97.6) 54(100.0) 24(96.0) 18(100.0) 57(98.3) 279(98.6)
TRNG 3(37.5) 8(21.6) 22(26.5) 20(37.0) 5(20.0) 3(16.7) 18(31.0) 79(17.9)
青霉素 敏感 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
低敏 0(0.0) 12(32.4) 41(49.4) 19(35.2) 11(44.0) 7(38.9) 8(13.8) 98(34.6)
耐药 8(100.0) 25(67.6) 42(50.6) 35(64.8) 14(56.0) 11(61.1) 50(86.2) 185(65.4)
环丙沙星 敏感 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 1(1.7) 1(0.4)
低敏 0(0.0) 0(0.0) 1(1.2) 0(0.0) 2(8.0) 0(0.0) 0(0.0) 3(1.0)
耐药 8(100.0) 37(100.0) 82(98.8) 54(100.0) 23(92.0) 18(100.0) 57(98.3) 279(98.6)
图1 2015至2021年本院所分离283株淋球菌对7种抗菌药物的耐药性
[1]
赵辩主编. 中国临床皮肤病学[M]. 南京: 江苏科学技术出版社,2010:1803-1807.
[2]
国家卫生健康委员会疾病预防控制局. 2020年全国法定传染病疫情概况[EB/OL].

URL    
[3]
国家卫生健康委员会疾病预防控制局. 2021年全国法定传染病疫情概况[EB/OL].

URL    
[4]
Unemo M, Ballard R, Ison C, et al. Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus[M]. WHO Press,2013:21-53.
[5]
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.Version 14.0, 2024.

URL    
[6]
黎小东, 梁景耀, 毕超, 等. 淋球菌130株对7种抗生素的耐药性结果分析[J]. 中国皮肤性病学杂志,2020,34(1):60-63.
[7]
李淑丽, 蔡常辉, 吴昌辉, 等. 2017-2018年中山市淋球菌耐药性监测分析[J]. 中国皮肤性病学杂志,2019,33(12):1395-1398.
[8]
朱邦勇, 李伟, 甘泉, 等. 广西地区淋病患者淋病奈瑟菌对七种抗生素的耐药监测[J]. 中国皮肤性病学杂志,2018,32(9):1052-1056.
[9]
潘露, 杨波, 赵建妹. 231株淋球菌对阿奇霉素等6种抗生素耐药观察[J]. 中国艾滋病性病,2018,24(12):1224-1225, 1235.
[10]
Ohnishi M, Saika T, Hoshina S, et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan[J]. Emerg Infect Dis,2011,17(1):148-149.
[11]
Unemo M, Golparian D, Nicholas R, et al. High-level cefixime and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure[J]. Antimicrob Agents Chemother,2012,56(3):1273-1280.
[12]
Lahra MM, Ryder N, Whiley DM. A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia[J]. N Engl J Med,2014,371(19):1850-1851.
[13]
Deguchi T, Yasuda M, Hatazaki K, et al. New clinical strain of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone, Japan[J]. Emerg Infect Dis,2016,22(1):142-144.
[14]
Nakayama S, Shimuta K, Furubayashi K, et al. New ceftriaxone and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan[J]. Antimicrob Agents Chemother,2016,60(7):4339-4341.
[15]
Chen SC, Han Y, Yuan LF, et al. Identification of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, China[J]. Emerg Infect Dis,2019,25(7):1427-1429.
[16]
Chen SC, Yuan LF, Zhu XY, et al. Sustained transmission of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China[J]. J Antimicrob Chemother,2020,75(9):2499-2502.
[17]
Yang F, Zhang HF, Chen Y, et al. Detection and analysis of two cases of the internationally spreading ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China[J]. J Antimicrob Chemother,2019,74(12):3635-3636.
[18]
Yuan QQ, Li YM, Xiu LS, et al. Identification of multidrug-resistant Neisseria gonorrhoeae isolates with combined resistance to both ceftriaxone and azithromycin, China, 2017-2018[J]. Emerg Microbes Infect,2019,8(1):1546-1549.
[19]
Wang H, Wang Y, Yong G, et al. Emergence and genomic characterization of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in Chengdu, China[J]. J Antimicrob Chemother, 2020,75(9): 2495-2498.
[20]
中国疾病预防控制中心性病控制中心, 中华医学会皮肤性病学分会性病学组, 中国医师协会皮肤科医师分会性病亚专业委员会. 梅毒,淋病和生殖道沙眼衣原体感染诊疗指南(2020年)[J]. 中华皮肤科杂志,2020,53(3):174-177.
[21]
Chen SC, Hu LH, Zhu XY, et al. Gonococcal urethritis caused by a multidrug resistant Neisseria gonorrhoeae strain with high level resistance to spectinomycin in China[J]. Emerg Microbes Infect,2020,9(1):517-519.
[22]
Lin XM, Qin XL, Wu XZ, et al. Markedly increasing antibiotic resistance and dual treatment of Neisseria gonorrhoeae isolates in Guangdong, China, from 2013 to 2020[J]. Antimicrob Agents Chemother,2022,66(4):e0229421.
[23]
Lin XM, Chen WT, Yu YQ, et al. Emergence and genomic characterization of Neisseria gonorrhoeae isolates with high levels of ceftriaxone and azithromycin resistance in Guangdong, China, from 2016 to 2019[J]. Microbiol Spectr,2022,10(6):e0157022.
[24]
杨寒淞, 曹应葵, 曾志君, 等. 159株淋球菌对7种抗生素的耐药性实验研究[J]. 皮肤病与性病,2021,43(3):317-319.
[25]
袁柳凤, 刘静, 赵兴云, 等. 231例淋病患者临床特征及应用头孢曲松钠疗效[J/CD]. 中华实验和临床感染病杂志(电子版),2022,16(1):33-38.
[1] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 韦涌涛, 王松霞, 苏爱美, 王东平. 耐碳青霉烯类铜绿假单胞菌耐药性及联合药敏试验研究[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 43-48.
[4] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[5] 刘鑫, 闻萍, 周阳, 徐玲玲. 维持性血液透析合并菌血症患者病原菌分布及耐药性分析[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 192-197.
[6] 顾思超, 李敏, 童润, 詹庆元. 肺移植供受者术中及术后48小时内肺部病原菌分布特点及预防性抗菌药物应用策略[J]. 中华移植杂志(电子版), 2021, 15(05): 282-285.
[7] 魏芳芳, 胡浩, 黄丽华, 韩旻雁, 姚麟. 某院2016~2020年泌尿外科多重耐药病原菌分布及耐药性分析[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 320-324.
[8] 蔡小芳, 高慧, 葛军, 邢慧芸, 庄小燕, 李小丁. 多重耐药性肺结核治疗依从性预测分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 51-56.
[9] 刘法永, 胡萍, 戴丽. 获得性肺炎患者血流感染病原菌分布及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 666-669.
[10] 谭自明, 罗琼, 张美, 王君. 小儿病毒性脑炎并发肺部感染的病原菌及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 394-396.
[11] 黎金秋, 韦晓芳, 王成玉. 腹膜透析相关性腹膜炎细菌谱变迁及药敏分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 264-269.
[12] 吴旻杭, 曹莉莉. 细胞自噬在肝癌进展中的作用[J]. 中华消化病与影像杂志(电子版), 2021, 11(05): 222-225.
[13] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144.
[14] 刁福强, 罗欣, 古春明, 唐玲玲. 广州某医院儿童社区获得性肺炎病原菌分布及耐药性分析[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 38-44.
[15] 高明生, 张盼盼, 包楠迪, 孟繁森, 李婷婷, 徐世平. 一种新型乳链菌素混合物体外杀灭幽门螺杆菌的实验研究[J]. 中华胃肠内镜电子杂志, 2023, 10(04): 258-263.
阅读次数
全文


摘要