切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 1 -6. doi: 10.3877/cma.j.issn.1674-1358.2021.01.001

所属专题: 文献

综述

糖基化修饰在包膜病毒感染过程中的作用
何玲玲1, 张成2, 周蓉蓉3, 魏红山1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院消化科
    2. 100730 北京,首都医科大学附属北京同仁医院消化科
    3. 266011 青岛市,青岛市立医院消化科
  • 收稿日期:2020-04-10 出版日期:2021-02-15
  • 通信作者: 魏红山
  • 基金资助:
    北京市自然科学基金(No. 7152073、7202071); 国家自然科学基金(No. 30872243、81071411)

Role of glycosylation in enveloped virus infection

Lingling He1, Cheng Zhang2, Rongrong Zhou3, Hongshan Wei1,()   

  1. 1. Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    2. Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    3. Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, China
  • Received:2020-04-10 Published:2021-02-15
  • Corresponding author: Hongshan Wei
引用本文:

何玲玲, 张成, 周蓉蓉, 魏红山. 糖基化修饰在包膜病毒感染过程中的作用[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 1-6.

Lingling He, Cheng Zhang, Rongrong Zhou, Hongshan Wei. Role of glycosylation in enveloped virus infection[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(01): 1-6.

包膜病毒感染过程中,劫持宿主细胞的糖基化修饰系统对自身抗原进行修饰,籍此逃脱宿主的免疫监视,是病毒感染的重要机制。而且,包膜蛋白的糖基化修饰,一方面发挥抗原屏蔽效应,导致疫苗研发更为困难;另一方面,修饰的聚糖对抗原表位结构也具有空间重构效应。因此,包膜病毒的中和抗体与修饰聚糖的结构有关。除此之外,抗原蛋白的糖基化修饰也与病毒识别、黏附,组织嗜性,病毒颗粒组装的质量控制以及毒性与侵袭力有关。本文对该领域的研究现状做一综述。

During the infection process, the enveloped virus hijacked the glycosylation system of the host cell to modify its own antigen, and escape from the immune monitoring of the host. Moreover, the glycosylation modification to the envelope protein, which played the antigen shielding effect, made the development of vaccine more difficult. On the other hand, the structure of the modified polysaccharide against the major epitope also had a spatial reconstruction effect. Therefore, the construction of neutralizing antibodies to the enveloped virus was related to the structure of the modified glycan. In addition, the glycosylation modification of antigen proteins was also associated with virus recognition, adhesion, tissue tropism, quality control of viral particle assembly, toxicity and infectivity. The current advances in this field were reviewed in this article.

[56]
Yin Y, Yu S, Sun Y, et al. Glycosylation deletion of hemagglutinin head in the H5 subtype avian influenza virus enhances its virulence in mammals by inducing endoplasmic reticulum stress[J]. Transbound Emerg Dis,2020;67(4):1492-1506.
[57]
Kim NY, Jung WW, Oh YK, et al. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission[J]. Xenotransplantation,2007,14(2):104-111.
[58]
Antonopoulos A, North SJ, Haslam SM, et al. Glycosylation of mouse and human immune cells: insights emerging from N-glycomics analyses[J]. Biochem Soc Trans,2011,39(5):1334-1340.
[59]
Whiteman MC, Li L, Wicker JA, et al. Development and characterization of non-glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus[J]. Vaccine,2010,28(4): 1075-1083.
[60]
Galili U. Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics?[J]. Glycobiology, 2016,26(11):1140-1150.
[61]
Neil SJ, McKnight A, Gustafsson K, et al. HIV-1 incorporates ABO histo-blood group antigens that sensitize virions to complement-mediated inactivation[J]. Blood,2005,105(12):4693-4699.
[62]
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation[J]. Glycobiology,2018,28(7):443-467.
[63]
Wang W, Nie J, Prochnow C, et al. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization[J]. Retrovirology,2013,10(1):1-28.
[64]
Iraqi M, Edri A, Greenshpan Y, et al. N-Glycans Mediate the Ebola Virus-GP1 Shielding of Ligands to Immune Receptors and Immune Evasion[J]. Front Cell Infect Microbiol,2020,10(1):1-11.
[65]
Henderson EA, Tam CC, Cheng LW, et al. Investigation of the immunogenicity of Zika glycan loop[J]. Virol J,2020,17(1):1-15.
[66]
Moratorio G, Vignuzzi M. Monitoring and redirecting virus evolution[J]. PLoS Pathog,2018,14(6):e1006979.
[1]
Bouwman Tokatlian T, Read BJ, Jones CA, et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers[J]. Science,2019,363(6427):649-654.
[2]
Bayer K, Banning C, Bruss V, et al. Hepatitis C virus is released via a noncanonical secretory route[J]. J Virol,2016,90(23):10558-10573.
[3]
Luther KB, Hülsmeier AJ, Schegg B, et al. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme[J]. J Biol Chem,2011,286(51):43701-43709.
[4]
Xiang Y, Baxa U, Zhang Y, et al. Crystal structure of a virus-encoded putative glycosyltransferase[J]. J Virol,2010,84(23):12265-12273.
[5]
Kumar S, Maurya VK, Prasad AK, et al. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV)[J]. Virusdisease,2020,31(1):13-21.
[6]
An Y, McCullers JA, Alymova I, et al. Glycosylation analysis of engineered H3N2 influenza A virus hemagglutinins with sequentially added historically relevant glycosylation sites[J]. J Proteome Res,2015,14(9):3957-3969.
[7]
Huang Y, Owino SO, Crevar CJ, et al. N-linked glycans and K147 residue on hemagglutinin synergize to elicit broadly reactive H1N1 influenza virus antibodies[J]. J Virol,2020,94(6):e01432-19.
[8]
Wu NC, Wilson IA. A Perspective on the structural and functional constraints for immune evasion: insights from influenza virus[J]. J Mol Biol,2017,429(17):2694-2709.
[9]
Rouvinski A, Dejnirattisai W, Guardado-Calvo P, et al. Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope[J]. Nat Commun,2017,8(1):1-12.
[10]
Igarashi M, Ito K, Kida H, et al. Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin[J]. Virology,376(2008):323-329.
[11]
Shao T, Pan J, Zhang S, et al. Application of MCMC-based bayesian modeling for genetic evolutionary and dynamic change analysis of Zika virus[J]. Front Genet,2020,10(1):1-9.
[12]
Yin Y, Yu S, Sun Y, et al. Glycosylation deletion of hemagglutinin head in the H5 subtype avian influenza virus enhances its virulence in mammals by inducing endoplasmic reticulum stress[J]. Transbound Emerg Dis,2020,67(4):1492-1506.
[13]
Manning JT, Yun NE, Seregin AV, et al. The glycoprotein of the live-attenuated Junin virus vaccine strain induces ER stress and forms aggregates prior to degradation in the lysosome[J]. J Virol,2020,94(8):e01693-19.
[14]
Liang JJ, Chou MW, Lin YL. DC-SIGN binding contributed by an extra N-linked glycosylation on Japanese encephalitis virus envelope protein reduces the ability of viral brain invasion[J]. Front Cell Infect Microbiol,2018,8(1):1-9.
[15]
Yan D, Shi Y, Wang H, et al. A single mutation at position 156 in the envelope protein of tembusu virus is responsible for virus tissue tropism and transmissibility in ducks[J]. J Virol,2018,92(17):e00427-18.
[16]
Boyoglu-Barnum S, Hutchinson GB, Boyington JC, et al. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses[J]. Nat Commun,2020,11(1):1-12.
[17]
Salpini R, Piermatteo L, Battisti A, et al. A hyper-glycosylation of HBV surface antigen correlates with HBsAg-negativity at immunosuppression-driven HBV reactivation in vivo and hinders HBsAg recognition in vitro[J]. Viruses,2020,12(2):E251.
[18]
Biering SB, Huang A, Vu AT, et al. N-Glycans on the Nipah virus attachment glycoprotein modulate fusion and viral entry as they protect against antibody neutralization[J]. J Virol,2012,86(22):11991-2002.
[19]
Cook JD, Lee JE. The secret life of viral entry glycoproteins: moonlighting in immune evasion[J]. PLoS Pathog,2013,9(5): e1003258.
[20]
Hastie KM, Zandonatti MA, Kleinfelter LM, et al. Structural basis for antibody-mediated neutralization of Lassa virus[J]. Science,2017,356(6341):923-928.
[21]
Thiemmeca S, Tamdet C, Punyadee N, et al. Secreted NS1 protects dengue virus from mannose-binding lectin-mediated neutralization[J]. J Immunol,2016,197(10):4053-4065.
[22]
Hoebe EK, Le Large TY, Tarbouriech N, et al. Epstein-Barr virus-encoded BARF1 protein is a decoy receptor for macrophage colony stimulating factor and interferes with macrophage differentiation and activation[J]. Viral Immunol,2012,25(6):461-470.
[23]
Ressing ME, van Leeuwen D, Verreck FA, et al. Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class Ⅱ immune evasion[J]. J Virol,2005,79(2):841-852.
[24]
Colgrave ML, Snelling HJ, Shiell BJ, et al. Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus[J]. Glycobiology, 2012,22(4):572-584.
[25]
Hsieh P, Rosner MR, Robbins PW. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins[J]. J Biol Chem,1983,258(4):2548-2554.
[26]
Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosylation in enveloped virus pathobiology[J]. Biochim Biophys Acta Gen Subj,2019,1863(10):1480-1497.
[27]
Go EP, Ding H, Zhang S, et al. Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven env trimers[J]. J Virol,2017,91(9): e02428-16.
[28]
Parsons LM, An Y, Qi L, et al. Influenza virus hemagglutinins H2, H5, H6, and H11 are not targets of pulmonary surfactant protein D: N-glycan subtypes in host-pathogen interactions[J]. J Virol,2020,94(5):e01951-19.
[29]
Zhang S, Sherwood RW, Yang Y, et al. Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts[J]. Proteomics,2012,12(8):1269-1288.
[30]
Carbaugh DL, Lazear HM. Flavivirus envelope protein glycosylation: impacts on viral infection and pathogenesis[J]. J Virol,2020,94(11):e00104-20.
[31]
Hacker K, White L, de Silva AM. N-linked glycans on dengue viruses grown in mammalian and insect cells[J]. J Gen Virol,2009,90(9):2097-2106.
[32]
Bonomelli C, Doores KJ, Dunlop DC, et al. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade[J]. PLoS One,2011,6(8):e23521.
[33]
Wang S, Voronin Y, Zhao P, et al. Glycan profiles of gp120 protein vaccines from four major HIV-1 subtypes produced from different host cell lines under non-GMP or GMP conditions[J]. J Virol,2020,94(7):e01968-19.
[34]
Yang YR, McCoy LE, van Gils MJ, et al. Autologous neutralizing antibody responses to an HIV envelope glycan hole are not easily broadened in rabbits[J]. J Virol,2020,94(7):e01861-19.
[35]
Seabright GE, Doores KJ, Burton DR, et al. Protein and glycan mimicry in HIV vaccine design[J]. J Mol Biol,2019,431(12):2223-2247.
[36]
Feinberg H, Mitchell DA, Drickamer K, et al. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR[J]. Science,2001,294(5549):2163-2166.
[37]
Wasik BR, Barnard KN, Parrish CR. Effects of sialic acid modifications on virus binding and infection[J]. Trends Microbiol,2016,24(12):991-1001.
[38]
Langereis MA, Bakkers MJ, Deng L, et al. Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins[J]. Cell Rep,2015,11(12):1966-1978.
[39]
Vimr ER. Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids[J]. ISRN Microbiol,2013,2013(1):1-26.
[40]
Anand SP, Finzi A. Understudied factors influencing Fc-mediated immune responses against viral infections[J]. Vaccines (Basel),2019,7(3):1-14.
[41]
Pritchard LK, Harvey DJ, Bonomelli C, et al. Cell- and protein-directed glycosylation of native cleaved HIV-1 envelope[J]. J Virol,2015,89(17):8932-8944.
[42]
Stencel-Baerenwald JE, Reiss K, Reiter DM, et al. The sweet spot: defining virus-sialic acid interactions[J]. Nat Rev Microbiol,2014,12(11):739-749.
[43]
Bouwman KM, Habraeken N, Laconi A, et al. N-glycosylation of infectious bronchitis virus M41 spike determines receptor specificity[J]. J Gen Virol,2020,101(6):599-608.
[44]
Baum LG, Paulson JC. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity[J]. Acta Histochem Suppl,1990,40(1):35-38.
[45]
Van Breedam W, Pöhlmann S, Favoreel HW, et al. Bitter-sweet symphony: glycan-lectin interactions in virus biology[J]. FEMS Microbiol Rev,2014,38(4):598-632.
[46]
Shida H, Dales S. Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecules[J]. Virology,1981,111(1):56-72.
[47]
Silver ZA, Antonopoulos A, Haslam SM, et al. Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies[J]. Cell Rep,2020,30(6):1862-1869.
[48]
Bräutigam J, Scheidig AJ, Egge-Jacobsen W. Mass spectrometric analysis of hepatitis C viral envelope protein E2 reveals extended microheterogeneity of mucin-type O-linked glycosylation[J]. Glycobiology,2013,23(4):453-474.
[49]
Bagdonaite I, Nordén R, Joshi HJ, et al. Global Mapping of O-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus[J]. J Biol Chem,2016,291(23):12014-12028.
[50]
Martinez O, Tantral L, Mulherkar N, et al. Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles[J]. J Infect Dis,2011,204(Suppl 3):S825-S832.
[51]
Nordén R, Halim A, Nyström K, et al. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner[J]. J Biol Chem,2015,290(8):5078-5091.
[52]
McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial virus surface glycoproteins[J]. Curr Top Microbiol Immunol,2013,372(1):83-104.
[53]
Schmitt S, Glebe D, Alving K, et al. Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus[J]. J Biol Chem,1999,274(17):11945-11957.
[54]
Midulla F, Di Mattia G, Nenna R, et al. Novel variants of respiratory syncytial virus A ON1 associated with increased clinical severity of bronchiolitis[J]. J Infect Dis,2020,222(1):102-110.
[55]
Noyori O, Matsuno K, Kajihara M, et al. Differential potential for envelope glycoprotein-mediated steric shielding of host cell surface proteins among filoviruses[J]. Virology,2013,446(1-2):152-161.
[1] 张小曼, 马筱秋, 许正锯, 张纯瑜, 何彩婷. 乙型肝炎病毒逆转录酶区耐药突变对血清乙型肝炎病毒表面抗原水平的影响[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 324-332.
[2] 王汉生, 陈晓, 尤辉, 刘岩, 任涛, 王梅芳. 肺吸虫感染致胸腔积液6例临床分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 348-353.
[3] 张玉, 薛文瑞, 王鑫, 李旭瑜, 王旭东, 袁鹏飞, 梁雨润, 韩志兴, 张海建, 刘庆军, 纪世琪. 人类免疫缺陷病毒感染合并膀胱癌14例临床特点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 354-358.
[4] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[5] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[6] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[7] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[8] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[9] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[10] 陈淑钿, 梁韵, 廖媛, 王杨. 补体C3在HBV相关慢加急性肝衰竭患者预后评估中的价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 562-566.
[11] 代叶梅, 苏晓乐, 王利华. 膜性肾病靶抗原的研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 282-286.
[12] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[13] 韩晓娟, 徐佳倩, 朱玉兰, 王莹, 李源, 冯珺, 邵东. HHLA2过表达胃癌细胞株构建及细胞功能的初步研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 373-377.
[14] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要