切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 7 -10. doi: 10.3877/cma.j.issn.1674-1358.2021.01.002

所属专题: 文献

综述

血管紧张素转化酶2在冠状病毒感染所致肺损伤及其他肺部疾病中研究进展
孙芬芬1, 贺斌峰1, 何勇1,()   
  1. 1. 400042 重庆,陆军军医大学大坪医院呼吸与危重症医学科
  • 收稿日期:2020-03-03 出版日期:2021-02-15
  • 通信作者: 何勇
  • 基金资助:
    国家自然科学基金青年基金(No. 81800086)

Advances on the effects of angiotensin converting enzyme 2 in coronavirus induced lung injury and other lung diseases

Fenfen Sun1, Binfeng He1, Yong He1,()   

  1. 1. Department of Respiratory Disease and Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
  • Received:2020-03-03 Published:2021-02-15
  • Corresponding author: Yong He
引用本文:

孙芬芬, 贺斌峰, 何勇. 血管紧张素转化酶2在冠状病毒感染所致肺损伤及其他肺部疾病中研究进展[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 7-10.

Fenfen Sun, Binfeng He, Yong He. Advances on the effects of angiotensin converting enzyme 2 in coronavirus induced lung injury and other lung diseases[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(01): 7-10.

血管紧张素转化酶2(ACE2)为拮抗血管紧张素转化酶-血管紧张素(ACE-Ang Ⅱ)的关键调控分子。本文总结ACE2通过与新型冠状病毒(SARS-CoV-2)以及非典型性肺炎(SARS)病毒所携带的S蛋白结合,介导上述病毒进入宿主细胞进行复制并发挥细胞毒性作用,并探讨使用二甲双胍以及血管紧张素转化酶抑制剂/血管紧张素受体拮抗剂(ACEI/ARB)缓解SARS-CoV-2感染所致肺组织损伤的可能性。此外,就ACE2以及介导的Ang Ⅱ水解产物Ang(1~7)在急性肺损伤(ALI)、肺纤维化和肺动脉高压中的研究进展进行综述。ACE2在新型冠状病毒肺炎(COIVD-19)的发病机制中发挥着重要作用,可成为设计、研发(COIVD-19)相关治疗药物的重要靶点。

Angiotensin converting enzyme 2 (ACE2) is considered as an critical regulator of angiotensin converting enzyme-angiotensin Ⅱ (ACE-Ang Ⅱ). The process that ACE2 bound the spike protein (S protein) on the surface of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) or severe acute respiratory syndrome (SARS) virus, which mediated these virus entrance to target cell for replication and cytotoxic effect were summarized. Furthermore, the possibility of metformin and angiotension converting enzyme inhibitors/angiotensin receptor blockers (ACEI/ARB) to the improvement of the lung tissue damage induced by SARS-CoV-2 were investigated. Additionally, the research progress of ACE2 and Ang Ⅱ hydrolysates-- Ang (1-7) on acute lung injury (ALI), pulmonary fibrosis and pulmonary artery hypertension (PAH) were reviewed. ACE2 played an important role in the pathogenesis of new coronavirus pneumonia and could be an important target for the design and development of drugs for coronavirus disease 2019.

[1]
Patel S, Rauf A, Khan H, et al. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies[J]. Biochem Pharmacol,2017,94:317-325.
[2]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system[J]. Circ Res,2020,126(10):1457-1475.
[3]
Li Y, Zhou W, Yang L, et al. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor[J]. Pharmacol Res,2020,157:104833.
[4]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature,2020,579(7798):270-273.
[5]
Wan Y, Shang J, Graham R, et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS[J]. J Virol,2020,94(7):e00127-20.
[6]
Michael L, Andrea M, Vincent M. Functional assessment of cell entry and receptor usage ofr SARS-CoV-2 and other lineage B betacoronaviruses[J]. Nat Microbiol,2020,5(4):562-569.
[7]
He X, Zhang L, Ran Q, et al. Integrative bioinformatics analysis provides insight into the molecular mechanisms of 2019-nCoV[J]. Med Rxiv,2020. [Online ahead of print].
[8]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020,367(6483):1260-1263.
[9]
Somineni HK, Boivin GP, Elased KM. Daily exercise training protects against albuminuria and angiotensin converting enzyme 2 shedding in db/db diabetic mice[J]. J Endocrinol,2014,221(2):235-251.
[10]
Markus H, Hannah KW, Simon S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blokced by clinically-proven protease inhibitor[J]. Cell,2020,181(2):271-280.
[11]
Yumiko Imai, Keiji Kuba, Shuan Rao, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature,2005, 436(7047):112-116.
[12]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature,2003,426(6965):450-454.
[13]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury[J]. Nat Med,2005,11(8):875-879.
[14]
Wang D, Chai XQ, Magnussen CG, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation[J]. Pulm Pharmacol Ther,2019,58:101833.
[15]
Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China[J]. J Pathol,2003,200(3):282-289.
[16]
Miura TA. Respiratory epithelial cells as master communicators during viral infections [J]. Curr Clin Microbiol Rep,2019,6(1):10-17.
[17]
Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type Ⅱ cells infected with severe acute respiratory syndrome-coronavirus[J]. Am J Respir Cell Mol Biol,2013,48(6):742-748.
[18]
Jia H. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease[J]. Shock,2016,46(3):239-248
[19]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19[J]. Cell,2020,181(5):1036-1045.
[20]
Ye J, Zhang B, Xu J, et al. Molecular pathology in the lungs of severe acute respiratory syndrome patients[J]. Am J Pathol,2007,170(2):538-545.
[21]
Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature,2005,436(7047):112-116.
[22]
Treml B, Neu N, Kleinsasser A, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets[J]. Crit Care Med,2010,38(2):596-601.
[23]
Wu H, Li Y, Wang Y, et al. Tanshinone ⅡA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/angiotensin-(1-7) axis in rats[J]. Int J Med Sci,2014,11(6):578-586.
[24]
孟莹,余常辉,蔡绍曦, 等. 血管紧张素1-7对博来霉素诱导大鼠肺纤维化的抑制作用[J]. 中华医学杂志,2013,93(20):1585-1589.
[25]
Uhal BD, Li X, Xue A, et al. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis[J]. Am J Physiol Lung Cell Mol Physiol,2011,301(3):L269-274.
[26]
Shao M, Wen ZB, Yang HH, et al. Exogenous angiotensin (1-7) directly inhibits epithelial-mesenchymal transformation induced by transforming growth factor-β1 in alveolar epithelial cells[J]. Biomed Pharmacother,2019,117:109193.
[27]
Meng Y, Yu CH, Li W, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway[J]. Am J Respir Cell Mol Biol,2014,50(4):723-736.
[28]
Morrell NW, Stenmark KR. The renin-angiotensin system in pulmonary hypertension[J]. Am J Respir Crit Care Med,2013,187(10):1138-1139.
[29]
Ishikane S, Hosoda H, Nojiri T, et al. Angiotensin Ⅱ promotes pulmonary metastasis of melanoma through the activation of adhesion molecules in vascular endothelial cells[J]. Biochem Pharmacol,2018,154:136-147.
[30]
Ferreira AJ, Shenoy V, Yamazato Y, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension[J]. Am J Respir Crit Care Med,2009,179(11):1048-1054.
[31]
Hampl V, Herget J, Bíbová J, et al. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia[J]. Physiol Res,2015,64(1):25-38.
[32]
Gwathmey TM, Alzayadneh EM, Pendergrass KD, et al. Novel roles of nuclear angiotensin receptors and signaling mechanisms[J]. Am J Physiol Regul Integr Comp Physiol,2012,302(5):R518-530.
[33]
Gwathmey TM, Pendergrass KD, Reid SD, et al. Angiotensin-(1-7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin Ⅱ within the cell nucleus[J]. Hypertension, 2010,55(1):166-171.
[34]
Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway[J]. Exp Mol Pathol,2019,113:104350.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[6] 戚若晨, 马帅军, 韩士超, 王国辉, 刘克普, 张小燕, 杨晓剑, 秦卫军. 肾移植术后新型冠状病毒感染单中心诊疗经验[J]. 中华移植杂志(电子版), 2023, 17(04): 232-239.
[7] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[8] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[9] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[10] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要