切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 385 -393. doi: 10.3877/cma.j.issn.1674-1358.2021.06.005

论著

急性期恶性疟患者外周血PD-1+TIGIT+ T细胞功能
黄雅倩1, 王蓓蓓1, 宋蕊2, 徐晓雪1, 赵雪2, 王芯栎1, 陈晨1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院传染病研究所
    2. 100015 北京,首都医科大学附属北京地坛医院感染二科
  • 收稿日期:2020-12-16 出版日期:2021-12-15
  • 通信作者: 陈晨
  • 基金资助:
    国家自然科学基金面上项目(No. 81971862); 北京市医院管理中心"登峰"计划专项经费资助(No. DFL20191801)

Function of PD-1+TIGIT+ T cells in peripheral blood of falciparum malaria patients in acute phase

Yaqian Huang1, Beibei Wang1, Rui Song2, Xiaoxue Xu1, Xue Zhao2, Xinyue Wang1, Chen Chen1,()   

  1. 1. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
    2. Infectious Diseases Department-Ⅱ, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
  • Received:2020-12-16 Published:2021-12-15
  • Corresponding author: Chen Chen
引用本文:

黄雅倩, 王蓓蓓, 宋蕊, 徐晓雪, 赵雪, 王芯栎, 陈晨. 急性期恶性疟患者外周血PD-1+TIGIT+ T细胞功能[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(06): 385-393.

Yaqian Huang, Beibei Wang, Rui Song, Xiaoxue Xu, Xue Zhao, Xinyue Wang, Chen Chen. Function of PD-1+TIGIT+ T cells in peripheral blood of falciparum malaria patients in acute phase[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(06): 385-393.

目的

研究急性期恶性疟患者外周血T淋巴细胞共抑制分子PD-1和TIGIT的表达模式及功能。

方法

收集2019年4月至2019年10月首都医科大学附属北京地坛医院感染二科14例非洲输入型急性期恶性疟患者发病后4~12 d和28例健康对照者外周血单个核细胞。流式细胞术检测患者外周血CD4+ T和CD8+ T淋巴细胞PD-1-TIGIT-、PD-1+TIGIT-、PD-1-TIGIT+和PD-1+TIGIT+四个亚群比例,比较各细胞亚群凋亡(Annexin V+)、增殖(Ki67+)、分泌细胞因子(IFN-γ+、IL-2+和TNF-α+)和杀伤(Granzyme B+和Perforin+)能力差异,正态分布资料采用one-way ANOVA检验进行方差分析,Holm-Sidak’s进行多重比较;偏态分布资料则采用Kruskal-Wallis检验进行分析,Bonferroni法进行多重比较。统计患者临床资料并分析急性期恶性疟患者T细胞各亚群比例和CD8+ T细胞杀伤能力与临床指标的相关性,正态分布资料采用Pearson相关性分析,非正态分布资料采用Spearman相关性分析。

结果

与健康对照组相比,急性期恶性疟患者CD4+ T和CD8+ T细胞中PD-1+和PD-1+TIGIT+细胞比例均显著增高(CD4:t = 4.85、P < 0.001,t = 4.77、P = 0.0002;CD8:t = 3.90、P = 0.001、t = 3.29、P = 0.0021);CD4+ T细胞TIGIT+亚群增加(t = 4.12、P = 0.0002)。CD4+ T细胞和CD8+ T细胞PD-1+TIGIT-和PD-1+TIGIT+细胞亚群Annexin V+表达比例均显著高于PD-1-TIGIT-细胞亚群(F = 4.67、P = 0.0125,F = 3.19、P = 0.0460),但CD4+ T细胞PD-1+TIGIT-和PD-1+TIGIT+细胞亚群Ki67+和IFN-γ+表达比例均显著高于PD-1-TIGIT-细胞亚群(H = 17.80、P = 0.0005,F = 11.22、P = 0.0002),CD8+ T细胞PD-1+TIGIT-和PD-1+TIGIT+细胞亚群IFN-γ+、IL-2+和Granzyme B+表达比例均显著高于PD-1-TIGIT-细胞亚群(F = 7.95、P = 0.047,H = 8.29、P = 0.0404,F = 12.18、P < 0.001)。急性期恶性疟患者CD4+和CD8+ T细胞各亚群比例与患者临床参数相关性分析发现CD4+ T细胞PD-1+TIGIT+表达比例与RBC计数和HGB浓度呈负相关(r =-0.3861、P = 0.0116,r =-0.3980、P = 0.0091)。CD8+ T细胞杀伤能力与患者临床参数相关性分析发现CD8+ T细胞Granzyme B+和Perforin+表达比例与Cr浓度呈显著负相关(r =-0.4812、P = 0.0201,r =-0.6255、P = 0.0014)。

结论

急性期恶性疟患者外周血T细胞PD-1和TIGIT表达上调,仍具有较强的增殖、杀伤和分泌细胞因子的能力,并未表现出典型的T细胞耗竭表型。患者CD4+ T细胞PD-1+TIGIT+表达比例增高可能与机体严重的红细胞破坏和溶血有关,CD8+ T细胞Granzyme B+和Perforin+表达比例增高可能与肾脏功能损伤程度有关。

Objective

To investigate the expression patterns and potential functions of PD-1 and TIGIT, two co-inhibitory molecules, on T lymphocyte cells in peripheral blood of patients with acute falciparum malaria infection.

Methods

Fourteen African imported patients with acute falciparum malaria in Infectious Diseases Department-Ⅱ of Beijing Ditan Hospital, Capital Medical University, from April to October 2019 were enrolled. Peripheral blood mononuclear cells at 4-12 d after symptom onset were collected, while 28 healthy were enrolled as controls. Flow cytometry was used to detect the proportions of four subsets (PD-1-TIGIT-, PD-1+TIGIT-, PD-1-TIGIT+ and PD-1+TIGIT+) of CD4+ T and CD8+ T cells in peripheral blood of patients, and the further expression level on apoptosis (Annexin V+), proliferation (Ki67+), cytokines secretion (IFN-γ+, IL-2+ and TNF-α+) and cytotoxicity (Granzyme B+ and Perforin+) in four subsets were compared, among which, variance analysis of normal distribution data were analyzed by one-way ANOVA test and multiple comparison were taken by holm-Sidak’s test. Skewness distribution data were analyzed by Kruskal-wallis test for variance analysis andmultiple comparison were taken by Bonferroni method. The clinical data of patients were collected, and correlations between the proportion of T cell subsets and clinical parameters as well as the cytotoxicity of CD8+ T cells and clinical parameters in patients with acute falciparum malaria were analyzed, among which, normal distribution data were analyzed by Pearson correlation analysis and skewness distribution data were analyzed by Spearman correlation analysis.

Results

Compared with healthy controls, the proportions of PD-1+ and PD-1+TIGIT+ subsets of CD4+ and CD8+ T cells in acute falciparum malaria patients were significantly increased (CD4: t = 4.85, P < 0.001; t = 4.77, P = 0.0002; CD8: t = 3.90, P = 0.001; t = 3.29, P = 0.0021). The proportion of TIGIT+ subsets of CD4+ T cells was increased (t = 4.12, P = 0.0002).The rates of Annexin V+ expressed by PD-1+TIGIT- and PD-1+TIGIT+ subsets of CD4+ T cells and CD8+ T cells were significantly increased compared those of PD-1-TIGIT- subsets (F = 4.67, P = 0.0125; F = 3.19, P = 0.0460), but the rates of Ki67+ and IFN-γ+ expressed by PD-1+TIGIT- and PD-1+TIGIT+ subsets of CD4+ T cells were significantly increased compared those of PD-1-TIGIT- subsets (H = 17.80, P = 0.0005; F = 11.22, P = 0.0002), and the rates of IFN-γ+ , IL-2+ and Granzyme B+ expressed by PD-1+TIGIT-and PD-1+TIGIT+ subsets of CD8+ T cells were also significantly increased compared those of PD-1-TIGIT- subsets (F = 7.95, P = 0.0470; H = 8.29, P = 0.0404; F = 12.18, P < 0.001). Correlation analysis between the proportion of four subsets of T cells and clinical parameters showed a negative relationship between the proportion of PD-1+TIGIT+ subsets of CD4+ T cells and red blood cells count or hemoglobin concentration (r =-0.3861, P = 0.0116; r =-0.3980, P = 0.0091). Correlation analysis between the CD8+ T cells cytotoxic capacity and clinical parameters also showed the proportion of Granzyme B+ and Perforin+ subsets of CD8+ T cells were negatively correlated with the creatinine concentration (r =-0.4812, P = 0.0201; r =-0.6255, P = 0.0014).

Conclusions

In patients with acute falciparum malaria infection, the up-regulated expression of PD-1 and TIGIT induced T cells higher ability of proliferation, cytotoxic capacity and production of cytokines in peripheral blood, but they did not show typical T cells exhaustion phenotype. Moreover, the increased expression of PD-1+TIGIT+ subsets of CD4+ T cells may be related to severe red blood cells destruction and hemolysis, and the increased expression of Granzyme B+ and Perforin+ of CD4+ T cells may be related to the degree of renal function injury.

表1 健康对照者和急性期恶性疟患者的临床资料
表2 健康对照者和急性期恶性疟患者T淋巴细胞表面共抑制分子PD-1和TIGIT表达比例
表3 急性期恶性疟患者CD4+ T细胞各亚群及功能表型比例(%)
表4 急性期恶性疟患者CD8+ T细胞各亚群及功能表型比例(%)
图1 患者CD4+ T细胞PD-1+TIGIT+表达比例与红细胞计数和血红蛋白浓度的相关性 注:采用Pearson相关性分析,*P<0.05、**P<0.01
表5 急性期恶性疟患者T细胞各亚群比例与临床指标的相关性[r值(P值)]
指标 CD4+ T细胞亚群 CD8+ T细胞亚群
PD-1-TIGIT- PD-1+TIGIT- PD-1-TIGIT+ PD-1+TIGIT+ PD-1-TIGIT- PD-1+TIGIT- PD-1-TIGIT+ PD-1+TIGIT+
RBC 0.2684(0.0857) 0.0765(0.6299) -0.1082(0.4953) -0.3861(0.0116) 0.1193(0.4516) 0.1315(0.4066) -0.1591(0.3142) -0.1265(0.4247)
HGB 0.2666(0.0879) 0.0928(0.5587) -0.1207(0.4466) -0.3980(0.0091) 0.1169(0.4611) 0.1460(0.3561) -0.1982(0.2082) -0.0382(0.8103)
CRP -0.3740(0.0546) 0.1951(0.3295) 0.2350(0.2380) 0.3249(0.0982) 0.0382(0.8501) 0.2791(0.1586) -0.1011(0.6160) -0.2932(0.1378)
PCT 0.2210(0.3357) 0.0325(0.8888) -0.1690(0.4640) -0.0787(0.7347) 0.0858(0.7115) -0.0488(0.8338) -0.0182(0.9376) -0.2715(0.2338)
ESR -0.1824(0.5321) -0.0418(0.8915) 0.1848(0.5244) 0.1473(0.6158) -0.4286(0.1281) 0.0506(0.8676) 0.5165(0.0741) 0.2885(0.3147)
Cr -0.1873(0.2472) -0.2098(0.1939) 0.1029(0.5276) -0.0483(0.7672) -0.1995(0.2170) 0.0956(0.5573) 0.0848(0.6029) 0.0487(0.7654)
ALT 0.1964(0.2733) -0.1641(0.3615) -0.0271(0.8811) -0.3353(0.0565) -0.0702(0.6979) 0.0358(0.8434) 0.1414(0.4326) -0.1611(0.3704)
AST 0.3062(0.0883) -0.3013(0.0884) -0.0652(0.7229) -0.3478(0.0511) -0.0213(0.9080) -0.0749(0.6834) 0.2399(0.1859) -0.3183(0.0759)
DBil 0.0156(0.9293) 0.3127(0.0674) -0.1264(0.4695) -0.1320(0.4498) -0.2477(0.1515) 0.1938(0.2647) 0.2141(0.2169) 0.0310(0.8595)
图2 急性期恶性疟患者Granzyme B+CD8+ T细胞和Perforin+CD8+ T细胞比例与肌酐浓度的相关性 注:均采用Spearman相关性分析,*P < 0.05、**P < 0.01
表6 急性期恶性疟患者CD8+ T细胞杀伤能力与临床指标的相关性
[1]
Ashley EA, PyaePhyo A, Woodrow CJ. Malaria[J]. Lancet,2018, 391(10130):1608-1621.
[2]
Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria[J]. Curr Opin Immunol,2016,42(3):91-97.
[3]
Schönrich G, Raftery MJ. The PD-1/PD-L1 axis and virus infections: A delicate balance[J]. Front Cell Infect Microbiol,2019,9(9):207.
[4]
高学松, 郭江, 段雪飞. 疟疾患者炎症指标变化特点及临床意义[J/CD]. 中华实验和临床感染病杂志(电子版),2018,12(3):240-243.
[5]
Sugiura D, Maruhashi T, Okazaki IM, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses[J]. Science,2019,364(6440):558-566.
[6]
Fromentin R, DaFonseca S, Costiniuk CT, et al. PD-1 blockade potentiates HIV latency reversal ex vivo in CD4+ T cells from ART-suppressed individuals[J]. Nat Commun,2019,10(1):814-819
[7]
Chew GM, Fujita T, Webb GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection[J]. PLoS Pathog,2016,12(1):e1005349.
[8]
Guillerey C, Harjunpää H, Carrié N, et al. TIGIT immune checkpoint blockade restores CD8+ T cell immunity against multiple myeloma[J]. Blood,2018,132(16):1689-1694.
[9]
Meng X, Liu X, Guo X, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells[J]. Nature,2018,564(7734):130-135.
[10]
Wherry EJ. T cell exhaustion[J]. Nat Immunol,2011,12(6):492-499.
[11]
Kong Y, Zhu L, Schell TD, et al. T-Cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T cell exhaustion and poor clinical outcome in AML patients[J]. Clin Cancer Res,2016,22(12):3057-3066.
[12]
Herrmann M, Schulte S, Wildner NH, et al. Analysis of co-inhibitory receptor expression in COVID-19 infection compared to acute plasmodium falciparum malaria: LAG-3 and TIM-3 correlate with T cell activation and course of disease[J]. Front Immunol,2020,11(2):1870-1884.
[13]
Edwards CL, Ng SS, Corvino D, et al. Early changes in CD4+ T cell activation during blood-stage plasmodium falciparum infection[J]. J Infect Dis,2018,218(7):1119-1129.
[14]
Mackroth MS, Abel A, Steeg C, et al. Acute malaria induces PD1+CTLA4+ effector T cells with cell-extrinsic suppressor function[J]. PLoS Pathog,2016,12(11):e1005909.
[15]
Abel A, Steeg C, Aminkiah F, et al. Differential expression pattern of co-inhibitory molecules on CD4+ T cells in uncomplicated versus complicated malaria[J]. Sci Rep,2018,8(1):4789-4819.
[16]
Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol,2011,13(2):188-195.
[17]
Liu X, Li M, Wang X, et al. PD-1+TIGIT+CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019,68(12):2041-2054.
[18]
Escalante AA, Pacheco MA. Malaria molecular epidemiology: an evolutionary genetics perspective[J]. Microbiol Spectr,2019,7(4):e0010.
[19]
World Health Organization. World malaria report 2018[EB/OL]. Geneva: 2019.

URL    
[20]
Su XZ, Lane KD, Xia L, et al. Plasmodium genomics and genetics: New insights into malaria pathogenesis, drug resistance, epidemiology, and evolution[J]. Clin Microbiol Rev,2019,32(4):e00019.
[21]
Taylor WRJ, Hanson J, Turner GDH, et al. Respiratory manifestations of malaria[J]. Chest,2012,142(2):492-505.
[22]
Karnad DR, Nor MBM, Richards GA, et al. Intensive care in severe malaria: Report from the task force on tropical diseases by the World Federation of Societies of Intensive and Critical Care Medicine[J]. J Crit Care,2018,43(43):356-360.
[23]
Milner DA Jr. Malaria Pathogenesis[J]. Cold Spring HarbPerspect Med,2018,8(1):a025569.
[24]
中华人民共和国国家卫生和计划生育委员会. WS259-2015疟疾的诊断[EB/OL]. 2015-11-16.

URL    
[25]
Jubel JM, Barbati ZR, Burger C, et al. The role of PD-1 in acute and chronic infection[J]. Front Immunol,2020,11(8):487-501.
[26]
Lafon M, Mégret F, Meuth SG, et al. Detrimental contribution of the mmuno-inhibitor B7-H1 to rabies virus encephalitis[J]. J Immunol,2008,180(11):7506-7515.
[27]
De Alwis R, Bangs DJ, Angelo MA, et al. Immunodominant dengue virus-specific CD8+ T cell responses are associated with a memory PD-1+phenotype[J]. J Virol,2016,90(9):4771-4779.
[28]
Zhang Y, Jiang N, Zhang T, et al. Tim-3 signaling blockade with α-lactose induces compensatory TIGIT expression in plasmodium berghei ANKA-infected mice[J]. Parasit Vectors,2019,12(1):534.
[29]
Ruibal P, Oestereich L, Lüdtke A, et al. Unique human immune signature of Ebola virus disease in Guinea[J]. Nature,2016,533(7601):100-104.
[30]
Hafalla JC, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog,2012,8(2):e1002504.
[1] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[2] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[3] 樊洋, 李国力, 郝禹, 曹钰, 李方园, 王锃涛, 曾辉. 内毒素打击后小鼠脾脏T淋巴细胞功能恢复动态研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 32-40.
[4] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[5] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[6] 曹伟, 李艳玲, 李亚辉, 张文化. 蓝芩口服液联合重组人干扰素α-2b喷雾治疗急性期小儿疱疹性咽峡炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 221-223.
[7] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[8] 李玲, 于艳艳, 王玉杰, 赵凯. 毛细支气管炎患儿血清25(OH)D水平与Th17/Treg平衡的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 718-720.
[9] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[10] 刘懿, 潘敏, 陈尧. 卢帕他定与依巴斯汀联合治疗慢性荨麻疹的效果及对补体水平和T淋巴细胞的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 189-194.
[11] 韩永清, 饶敏超, 傅峰, 黄开荣. 参芪十一味颗粒联合FOLFOX4方案化疗对晚期结直肠癌患者的近期疗效及其对血清IL-35、IL-37和T淋巴细胞亚群的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 400-404.
[12] 黄山, 吕松琴, 张娟, 徐丽萍, 李佳能, 李晓非. 云南地区新发艾滋病合并其他病原微生物感染患者外周血T淋巴细胞亚群分布特征初探[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 16-20.
[13] 范茹, 刘宇清, 胡晓榕, 王轶奇, 张芬, 岑星, 卜玉洁, 陈俊伟. 系统性红斑狼疮患者长链非编码RNA表达变化及其与CD8+T细胞相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 184-189.
[14] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
[15] 许志威, 刘辉华, 覃伟钊, 封桂宇, 李贤, 覃翠, 林洁洁, 梁国辉. 芪蛭丹通络胶囊治疗非急性期缺血性中风气虚血瘀证的临床疗效[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 232-236.
阅读次数
全文


摘要