切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 379 -384. doi: 10.3877/cma.j.issn.1674-1358.2021.06.004

论著

巨噬细胞游走抑制因子在乙型肝炎病毒相关性肝细胞癌中的调控作用
纪世博1, 庄立伟1, 张雨1, 李贲1, 程丹颖1, 刘顺爱2, 成军3, 邢卉春1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院肝病三科
    2. 100015 北京,首都医科大学附属北京地坛医院传染病研究所
    3. 100015 北京,首都医科大学附属北京地坛医院
  • 收稿日期:2021-03-22 出版日期:2021-12-15
  • 通信作者: 邢卉春
  • 基金资助:
    "十三五"艾滋病和病毒性肝炎等重大传染病防治(No. 2018ZX10302206-003-006); 首都卫生发展科研专项(No.首发2020-1-2171); 北京市医院管理中心扬帆计划(No. xmlx201837); 北京市医院管理中心消化内科学科协同发展中心项目(No. XXT26)

Regulatory role of macrophage migration inhibitory factor in hepatitis B virus-related hepatocellular carcinoma

Shibo Ji1, Liwei Zhuang1, Yu Zhang1, Ben Li1, Danying Cheng1, Shun’ai Liu2, Jun Cheng3, Huichun Xing1,()   

  1. 1. Central of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    2. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    3. Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2021-03-22 Published:2021-12-15
  • Corresponding author: Huichun Xing
引用本文:

纪世博, 庄立伟, 张雨, 李贲, 程丹颖, 刘顺爱, 成军, 邢卉春. 巨噬细胞游走抑制因子在乙型肝炎病毒相关性肝细胞癌中的调控作用[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(06): 379-384.

Shibo Ji, Liwei Zhuang, Yu Zhang, Ben Li, Danying Cheng, Shun’ai Liu, Jun Cheng, Huichun Xing. Regulatory role of macrophage migration inhibitory factor in hepatitis B virus-related hepatocellular carcinoma[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(06): 379-384.

目的

探讨巨噬细胞游走抑制因子(MIF)在乙型肝炎病毒(HBV)相关性肝细胞癌(HCC)中的调控作用机制。

方法

通过转染lentivirus-MIF shRNA,抑制人肝癌细胞系HepG2.2.15中MIF的表达,分为转染组和空转组。应用四甲基偶氮唑蓝(MTT)法检测细胞的生长增殖变化,采用流式细胞仪观察细胞的凋亡变化,应用Western blot蛋白印记法检测MIF、核因子κB(NF-κB)和B细胞淋巴瘤/白血病-2(Bcl-2)蛋白水平变化。转染组与空转组的细胞增殖和凋亡相关实验指标采用配对资料t检验分析。

结果

MIF在HepG2.2.15细胞中呈高表达,抑制MIF表达后,与空转组相比,转染组HepG2.2.15细胞的活性下降(53.0 ± 2.0)%(t = 6.421、P = 0.023),凋亡增加(22.5 ± 3.0)%(t = 5.837、P = 0.027),同时NF-κB、Bcl-2蛋白表达分别下降(48.8 ± 2.0)%(t = 6.936、P = 0.021)和(50.3 ± 3.0)%(t = 6.729、P = 0.022),差异均有统计学意义。

结论

MIF可能通过调控NF-κB及其下游Bcl-2通路的基因表达,从而影响HepG2.2.15细胞的增殖与凋亡。抑制MIF可能会成为HBV感染相关性HCC治疗的新靶点。

Objective

To investigate the regulatory mechanism of macrophage migration inhibitory factor (MIF) in hepatitis B virus (HBV) related hepatocellular carcinoma (HCC).

Methods

MIF expression was inhibited in human HCC cell line HepG2.2.15 by transfection of lentivirus-MIF shRNA. HepG2.2.15 cells were divided into transfection group and control group. The growth and proliferation changes of HepG2.2.15 cells were detected by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), changes of apoptosis in the cells were observed by flow cytometry, the protein level changes of MIF, nuclear factor κB (NF-κB) and B-cell lymphoma-2 (Bcl-2) were determined by Western blot. The experimental indicators of cell proliferation and apoptosis between transfection group and control group were analyzed by paired-wise data t-test.

Results

MIF was highly expressed in HepG2.2.15 cell. Compared with the control group, the proliferation of HepG2.2.15 cell in transfection group was decreased by (53.0 ± 2.0) % (t = 6.421, P = 0.023), the apoptosis was increased by (22.5 ± 3.0)% (t = 5.837, P = 0.027), while the protein expression of NF-κB and Bcl-2 were decreased by (48.8 ± 2.0)% (t = 6.936, P = 0.021) and (50.3 ± 3.0)% (t = 6.729, P = 0.022) , respectively, all with significant differences.

Conclusions

MIF could affect the proliferation and apoptosis of HepG2.2.15 cells by regulating the gene expression of NF-κB and its downstream Bcl-2 pathway. Inhibition of MIF may become a novel target for treatment of HBV infection-associated HCC.

图1 HepG2.2.15细胞、HepG2细胞及L02细胞中MIF和β-actin蛋白的表达
图2 MTT检测MIF抑制后HepG2.2.15细胞的活力变化
图3 流式细胞术检测MIF抑制后HepG2.2.15细胞的凋亡
图4 HepG2.2.15细胞中MIF、NF-κB、Bcl-2和β-actin蛋白表达
[13]
Kontos C, El Bounkari O, Krammer C, et al. Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting[J]. Nat Commun,2020,11(1):5981-5998.
[14]
Zhong L, Qiao PP, Wang BL, Liu C. Relationship between MIF-173G/C polymorphism and cerebral stroke[J]. J Biol Regul Homeost Agents,2020,34(5):1757-1761.
[15]
Arizza V, Bonura A, La Paglia L, Urso A, Pinsino A, Vizzini A. Transcriptional and in silico analyses of MIF cytokine and TLR signalling interplay in the LPS inflammatory response of Ciona robusta[J]. Sci Rep,2020,10(1):11339-11354.
[16]
Castro BA, Flanigan P, Jahangiri A, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy[J]. Oncogene,2017,36(26):3749-3759.
[17]
Patterson AM, Kaabinejadian S, McMurtrey CP, et al. Human leukocyte antigen-presented macrophage migration inhibitory factor is a surface biomarker and potential therapeutic target for ovarian cancer[J]. Mol Cancer Ther,2016,15(2):313-322.
[18]
Balogh KN, Templeton DJ, Cross JV. Macrophage migration inhibitory factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses[J]. PLoS One,2018, 13(6):e0197702.
[19]
An HJ, Koh HM, Lee JS, et al. Prognostic role of macrophage migration inhibitory factor in patients with clear cell renal cell carcinoma[J]. Medicine (Baltimore),2020,99(50):e23277.
[20]
Koh HM, Kim DC. Prognostic significance of macrophage migration inhibitory factor expression in cancer patients: A systematic review and meta-analysis[J]. Medicine (Baltimore),2020,99(32):e21575.
[21]
Ismail MM, Morsi HK, Abdulateef NA, et al. Evaluation of prothrombin induced by vitamin K absence, macrophage migration inhibitory factor and Golgi protein-73 versus alpha fetoprotein for hepatocellular carcinoma diagnosis and surveillance[J]. Scand J Clin Lab Invest,2017,77(3):175-183.
[22]
董辉, 王晶, 杨艳娟, 等. 过表达miR-451a通过靶向巨噬细胞迁移抑制因子(MIF)抑制HepG2细胞的增殖[J]. 细胞与分子免疫学杂志,2018,34(12):1091-1098.
[23]
安晓刚, 马玉, 马娟, 等. 原发性肝癌血清甲胎蛋白和巨噬细胞移动抑制因子水平及其临床意义[J]. 宁夏医科大学学报,2017,39(12):1442-1444.
[24]
Kamel MM, Saad MF, Mahmoud AA, et al. Evaluation of serum PIVKA-Ⅱ and MIF as diagnostic markers for HCV/HBV induced hepatocellular carcinoma[J]. Microb Pathog,2014,77:31-5.
[25]
张锋. 肝癌免疫耐受机制研究进展[J]. 复旦学报(医学版),2020,47(2):280-287.
[26]
徐晓义, 黄小俊, 夏树伟, 等. 原发性肝癌患者四跨膜蛋白8,埃兹蛋白及微小RNA-634与预后的相关性[J/CD]. 中国肝脏病杂志(电子版),2020,12(3):47-52.
[27]
Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma[J]. J Hepatol,2016,64(Suppl 1):S84-S101.
[28]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin,2015,65(2):87-108.
[1]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018,391(10127):1301-1314.
[2]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.
[3]
Hou J, Hong Z, Feng F, et al. A novel chemotherapeutic sensitivity-testing system based on collagen gel droplet embedded 3D-culture methods for hepatocellular carcinoma[J]. BMC Cancer, 2017,17(1):729-736.
[4]
沈宗毅, 李卯晨, 白素杭, 等. 肝癌免疫治疗的研究进展[J]. 生物工程学报,2019,35(12):2326-2338.
[5]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin,2016,66(2):1-18.
[6]
Zheng R, Zeng H, Zhang S, Chen W. Estimates of cancer incidence and mortality in China, 2013[J]. Chin J Cancer,2017,36(8):384-389.
[7]
致癌相关环状RNA在慢性乙型肝炎病毒感染者的表达及临床意义[J/CD]. 中华实验和临床感染病杂志(电子版),2021,15(2):78-85.
[8]
Tseng TC, Huang LR. Immunopathogenesis of hepatitis B virus[J]. J Infect Dis,2017,216(8):765-770.
[9]
毛莉莎, 宋庆峰, 马天骏, 崔英. HBV感染所致免疫失衡与肝细胞癌的研究进展[J]. 中国癌症防治杂志,2020,12(2):232-236.
[10]
Saitta C, Tripodi G, Barbera A, et al. Hepatitis B virus (HBV) DNA integration in patients with occult HBV infection and hepatocellular carcinoma[J]. Liver Int,2015,35(10):2311-2317.
[11]
Wang K, Liang Q, Wei L, et al. MicroRNA-608 acts as a prognostic marker and inhibits the cell proliferation in hepatocellular carcinoma by macrophage migration inhibitory factor[J]. Tumour Biol,2016,37(3):3823-3830.
[12]
Newell-Rogers MK, Rogers SK, Tobin RP, et al. Antagonism of macrophage migration iInhibitory factory (MIF) after traumatic brain injury ameliorates astrocytosis and peripheral lymphocyte activation and expansion[J]. Int J Mol Sci,2020,21(20):7448-7460.
[29]
辛梦, 李岩. HBV相关性肝细胞癌治疗致HBV再激活的研究进展[J]. 山东医药,2018,58(24):101-104.
[30]
李瑶, 高颖生, 吕晓丹, 等. 巨噬细胞游走抑制因子在肿瘤中的作用研究进展[J]. 现代生物医学进展,2017,17(20):3992-3995.
[31]
陈其冰, 李芬. 巨噬细胞迁移抑制因子对肿瘤微环境影响的研究进展[J]. 疑难病杂志,2019,18(6):644-648.
[32]
周鸣, 余蕾, 李琴山, 等. MIF基因沉默对肝癌细胞系增殖凋亡及ERK/RSK2信号通路的影响[J]. 中国现代医学杂志,2017,27(19):22-27.
[33]
Zhang YF, Bu FT, Yin NN, et al. NLRP12 negatively regulates EtOH-induced liver macrophage activation via NF-κB pathway and mediates hepatocyte apoptosis in alcoholic liver injury[J]. Int Immunopharmacol,2020,88:106968.
[34]
Lian J, Zou Y, Huang L, et al. Hepatitis B virus upregulates cellular inhibitor of apoptosis protein 2 expression via the PI3K/AKT/NF-κB signaling pathway in liver cancer[J]. Oncol Lett,2020,19(3):2043-2052.
[35]
李艳萌, 贾思雨, 徐安健, 等. 雌激素通过NF-κB信号通路影响肝癌细胞的肿瘤学行为研究[J]. 临床和实验医学杂志,2019,18(2):117-122.
[36]
杨小理, 余云艳, 欧阳旭红, 等. 长寿保障同源基因2诱导Hepa1-6肝癌细胞G0/G1期阻滞的作用及其机制[J]. 中华实验外科杂志,2018,35(7):1250-1252.
[37]
欧志涛, 詹远京, 郭家伟, 罗铎. CIAPIN1对HepG2细胞增殖和细胞周期的影响[J]. 实用肝脏病杂志,2018,21(1):38-41.
[38]
Hwang-Bo H, Lee WS, Nagappan A, et al. Morin enhances auranofin anticancer activity by up-regulation of DR4 and DR5 and modulation of Bcl-2 through reactive oxygen species generation in Hep3B human hepatocellular carcinoma cells[J]. Phytother Res,2019,33(5):1384-1393.
[39]
Venkatachalam P, Nadumane VK. Modulation of Bax and Bcl-2 genes by secondary metabolites produced by Penicillium rubens JGIPR9 causes the apoptosis of cancer cell lines[J]. Mycology,2019,12(2):69-81.
[40]
AboYoussef AM, Khalaf MM, Malak MN, Hamzawy MA. Repurposing of sildenafil as antitumour; induction of cyclic guanosine monophosphate/protein kinase G pathway, caspase-dependent apoptosis and pivotal reduction of Nuclear factor kappa light chain enhancer of activated B cells in lung cancer[J]. J Pharm Pharmacol,2021,73(8):1080-1091.
[41]
Koohsari M, Ahangar N, Mohammadi E, et al. Effects of tramadol administration on male reproductive toxicity in Wistar rats The role of oxidative stress, mitochondrial dysfunction, apoptosis-related gene expression, and nuclear factor kappa B signalling[J]. Bratisl Lek Listy,2020,121(6):400-410.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[3] 王迎迎, 谢平. 乙型肝炎病毒感染合并肺结核患者发生肝损伤的危险因素及预测模型构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 267-273.
[4] 董杰, 杨松, 杨浩, 陈翔, 张万里. 乙酰辅酶A羧化酶2基因高甲基化与肝细胞癌临床病理因素和生存期的关系[J]. 中华普通外科学文献(电子版), 2023, 17(06): 433-437.
[5] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[6] 王荣昌, 欧奇峰, 黄晋杰, 王彩琴, 汪谦, 黄晓卉. miR-145-5p在肝细胞癌中的表达及其临床意义[J]. 中华普通外科学文献(电子版), 2023, 17(03): 197-202.
[7] 尹宏祥, 段家康, 江博文, 谈燚. 全身免疫炎症指数联合预后营养指数对接受根治性切除术的肝细胞癌的预后价值研究[J]. 中华普通外科学文献(电子版), 2023, 17(02): 93-98.
[8] 马铭秀, 徐锋, 谢铠岭, 郭亚明, 卢潼辉, 戴朝六. 术前碱性磷酸酶-前白蛋白比值对肝细胞癌切除术预后的评估价值[J]. 中华普通外科学文献(电子版), 2023, 17(02): 99-103.
[9] 曹亚娟, 黎兵华, 余德才. 转化治疗联合Laennec入路机器人右半肝切除治疗进展期肝癌[J]. 中华腔镜外科杂志(电子版), 2023, 16(02): 116-119.
[10] 陈淑钿, 梁韵, 廖媛, 王杨. 补体C3在HBV相关慢加急性肝衰竭患者预后评估中的价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 562-566.
[11] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[12] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 刘中百, 任勇军. 肝细胞癌的介入治疗现状及进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 111-115.
[15] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
阅读次数
全文


摘要