切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 272 -277. doi: 10.3877/cma.j.issn.1674-1358.2020.04.002

所属专题: 专题评论 文献

论著

稳定表达荧光素酶的产酸克雷伯菌在评估不同灭菌方法中的应用
滑明溪1, 袁临天1, 李昂1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院传染病研究所
  • 收稿日期:2019-10-28 出版日期:2020-08-15
  • 通信作者: 李昂
  • 基金资助:
    国家自然科学基金(No. 81902025); 北京市医院管理局扬帆计划重点医学专业(No. ZYLX2018-02-感染性疾病重症医学); 北京市博士后科研活动经费(No. ZZ2019-019); 北京市自然科学基金(No. 7184218)

Application of Klebsiella oxytoca with stable expression of luciferase in evaluating different sterilization methods

Mingxi Hua1, Liutian Yuan1, Ang Li1,()   

  1. 1. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2019-10-28 Published:2020-08-15
  • Corresponding author: Ang Li
  • About author:
    Corresponding author: Li Ang, Email:
引用本文:

滑明溪, 袁临天, 李昂. 稳定表达荧光素酶的产酸克雷伯菌在评估不同灭菌方法中的应用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(04): 272-277.

Mingxi Hua, Liutian Yuan, Ang Li. Application of Klebsiella oxytoca with stable expression of luciferase in evaluating different sterilization methods[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(04): 272-277.

目的

构建稳定表达荧光素酶基因(lux)的产酸克雷伯菌,旨在更直观地观察产酸克雷伯菌(K. oxytoca)在宿主体内的分布以及评估不同杀菌方法的效果。

方法

扩增pBAV1k-T5-Lux质粒的荧光素酶基因簇(Lux A/B/C/D/E),构建含有Lux A/B/C/D/E基因簇的pBBR1质粒(pBBR1-lux),并获得能够表达荧光素基因基团的大肠埃希菌(E. coli-pBBR1-lux)。将pBBR1-lux质粒电转化至产酸克雷伯菌感受态细胞,经荧光强度鉴定及菌株的3次传代,筛选能够稳定表达lux基因的产酸克雷伯菌(K. oxytoca-pBBR1-lux)。

结果

连接成功的环状质粒产物命名为pBBR1-lux。与大肠埃希菌对照株相比,含E. coli-pBBR1-lux的Luminesence荧光信号值显著升高[15 345(14 676,18 654) vs. 63(60,82)],差异具有统计学意义(t = 21.14、P = 0.035)。K. oxytoca-pBBR1-lux的Luminesence荧光信号值[399 303(265 245,617 192)]显著高于产酸克雷伯菌对照菌株[83(63.5,86.75)],差异具有统计学意义(t = 7.07、P = 0.014)。E. coli-pBBR1-luxK. oxytoca-pBBR1-lux均能够在Veritas微孔板光度计和小动物成像仪上检测到Luminesence荧光信号。将所得菌株按照1︰10稀释6个梯度,荧光值检测结果显示,Luminesence值随菌落浓度降低而下降。多次传代后pBBR1-lux能够在产酸克雷伯菌中稳定表达荧光素酶,不同理化杀菌方法对产酸克雷伯菌杀菌效果不同,紫外线和84消毒液(10%)是最有效的杀灭产酸克雷伯菌方法。

结论

本研究获得了可被微孔板光度计和小动物成像仪检测到的稳定表达荧光素酶的K. oxytoca-pBBR1-lux

Objective

To construct a Klebsiella oxytoca (K. oxytoca)-pBBR1-lux strain that stably express luciferase (lux) gene, and to investigate the distribution of K. oxytoca in vivo and to evaluate the effect of different methods of sterilization.

Methods

The luciferase gene cluster (Lux A/B/C/D/E) of pBAV1k-T5-Lux plasmid was amplified, and the pBBR1 plasmid (pBBR1-lux) containing Lux A/B/C/D/E gene cluster was constructed; while Escherichia coli which expressed fluorescein gene group (E. coli-pBBR1-lux) was obtained. The expression of luciferase in E. coli-pBBR1-lux and K. oxytoca-pBBR1-lux were tested using luminescence microplate spectrophotometer. The pBBR1-lux plasmid was electroconverted to the receptive cells of K. oxytoca; after fluorescence intensity identification and three passages of the strain, K. oxytoca-pBBR1-lux which stably express lux genes were screened. Conjugated circular plasmid product was named pBBR1-lux. The value of Luminesence fluorescence signal of E. coli-pBBR1-lux increased significantly compared with E. coli control strain [15 345 (14 676, 18 654) vs. 63 (60, 82)], with significant difference (t = 21.14, P = 0.035). The value of Luminesence fluorescence signal of K. oxytoca-pBBR1-lux [399 303 (265 245, 617 192)] was significantly higher than that of the control strain K. oxytoca [83 (63.5, 86.75)], with significant difference (t = 7.07, P = 0.014). E. coli-pBBR1-lux and K. oxytoca-pBBR1-lux were both able to detect fluorescence signals on Veritas microplate photometer and small animal imager. According to 1︰10 dilution of 6 gradients, the fluorescence detection results showed that the Luminesence value decreased with the decreasing of colony concentration. After repeated passage pBBR1-lux luciferase could be stably expressed in K. oxytoca. Different physicochemical methods had different bactericidal effect on K. oxytoca-producing bacteria. Ultraviolet ray and 84 disinfectant (10%) were the most effective methods to inactivate K. oxytoca-producing bacteria.

图1 PBBR1-LUX A/B/C/D/E质粒构建过程示意图
图2 E. coli-pBBR1-lux能够稳定表达荧光素酶
图3 K. oxytoca-pBBR1-lux稳定表达荧光素酶
图4 传代至第十代后K. oxytoca-pBBR1-lux稳定表达荧光素酶
图5 不同浓度K. oxytoca-pBBR1-lux的Luminescence荧光强度
图6 不同理化杀菌方法对K. oxytoca-pBBR1-lux的杀菌效果
[1]
Högenauer C, Langner C, Beubler E, et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis[J]. N Engl J Med Overseas Ed,2006,355(23):2418-2426.
[2]
Park EA, Kim YT, Cho JH, et al. Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae[J]. Arch Virol,2017,162(4):1129-1139.
[3]
Jackson KJA. Prevalence of Klebsiella oxytoca in Anolis carolensis of Louisiana[J]. Vector Borne Zoonotic Dis,2016,16(12):800-801.
[4]
Ochoa M, Salazar A, Gomez D. Extended-spectrum β-lactamases (ESBL) TEM and SHV in intensive care unit patients with health-care associated infections, silenced genes?[J]. Int J Infect Dis,2018,73:14.
[5]
Kumar Trivedi M. Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment[J]. J Microb Biochem Technol,2015,7(4):202-205..
[6]
Leitner E, Zarfel G, Luxner J, et al. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward[J]. Antimicrob Agents Chemother,2015,59(1):714-716.
[7]
张文婧, 褚月娇, 王佳贺. 神经外科住院患者医院感染现状的研究进展[J]. 中国医药导报,2019,16(20):38-41.
[8]
冯思语, 胡露露, 毕言伟, 等. 2013-2015年肺炎克雷伯菌和产酸克雷伯菌的临床分布及耐药性分析[J]. 南京医科大学学报,2017(37):328-331.
[9]
Tominaga T. Rapid detection of Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica and other related bacteria in food by lateral-flow test strip immunoassays[J]. J Microbiol Methods,2018,147:43-49.
[10]
Hastings JW. Chemistries and colors of bioluminescent reactions: a review[J]. Gene,1996,173(1):5-11.
[11]
Hastings JW, Greenberg EP. Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria[J]. J Bacteriol,1999,181(9):2667-2668.
[12]
Wang X, Chi H, Zhou B, et al. Bacterial luciferase gene cassette as a real-time bioreporter for infection model and drug evaluation[J]. Curr Pharm Des,2018,24(8):952-958.
[13]
Johnson JK, Robinson GL, Pineles LL, et al. Carbapenem MICs in Escherichia coli and Klebsiella species producing extended-spectrum β-lactamases in critical care patients from 2001 to 2009[J]. Antimicrob Agents Chemother,2017,61(4):AAC.01718-16.
[14]
Li M, Shen X, Yan J, et al. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2[J]. Mol Microbiol,2011,79(6):1670-1683.
[15]
林静, 何佳茜, 尚翠玲, 等. 5种常见致病菌菌液OD值与其活菌数相关性研究[J]. 天津农学院学报,2017,24(4):42-45.
[16]
朱艳蕾. 细菌生长曲线测定实验方法的研究[J]. 微生物学杂志,2016,36(5):108-112.
[17]
Beaugerie L, Metz M, Barbut F, et al. Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis[J]. Clin Gastroenterol Hepatol,2003,1(5):370-376..
[18]
Dima Y, Babak H, Riederer KM, et al. Klebsiella pneumoniae and K. oxytoca Bacteremia: differences in host, source, and antibiotic susceptibility[J]. Open Forum Infect Dis,2019,6(Supplement_2): S112-S112.
[19]
俞云松. 细菌耐药的流行现状及防控对策[J]. 中华临床感染病杂志,2010,3(3):129-133.
[20]
罗讯, 徐紫慧, 张文劲, 等. 欧盟和北美抗生素耐药性监测调查现状比较[J]. 中国抗生素杂志,2019,44(4):393-400.
[21]
徐艳, 杨怀, 陈黎媛, 等. 中国临床微生物室参与医院感染及抗菌药物使用管理的现状[J]. 中国感染控制杂志,2019,18(2):33-39.
[22]
Bacconi M, Haag AF, Torre A, et al. A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections[J]. Appl Microbiol Biotechnol,2016,100(7):3197- 3206.
[23]
Leschner S, Weiss S. Noninvasive in vivo imaging to follow bacteria engaged in cancer therapy[M]. Bacterial Therapy of Cancer. Humana Press, New York, NY,2016:61-68.
[24]
欧佳美, 胡秋蓉. 微生物检验中细菌耐药性监测的临床应用[J]. 深圳中西医结合杂志,2018,28(16):88-89.
[25]
张昭勇, 高波, 李显东, 等. VAP患者CRE医院感染分子流行病学特征及影响因素[J]. 山东医药,2019,63(25):31-35.
[1] 周影, 周春根, 江滨. 生物光学成像技术在干细胞应用中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 189-192.
[2] 张丽娜, 李征然, 黄明声, 王劲, 郭若汨, 唐文杰. 海肾荧光素酶基因标记肝癌细胞生物发光成像在小鼠肝癌活体示踪中应用[J]. 中华肝脏外科手术学电子杂志, 2017, 06(06): 504-508.
阅读次数
全文


摘要