[1] |
Singer EJ, Valdes-Sueiras M, Commins D, et al. Neurologic presentations of AIDS[J]. Neurol Clin,2010,28(1):253-275.
|
[2] |
Schouten J, Cinque P, Gisslen M, et al. HIV-1 infection and cognitive impairment in the cART era: a review[J]. AIDS,2011,25(5):561-575.
|
[3] |
Sacktor N, Nakasujja N, Skolasky RL, et al. HIV subtype D is associated with dementia, compared with subtype A, in immunosuppressed individuals at risk of cognitive impairment in Kampala, Uganda[J]. Clin Infect Dis,2009,49(5):780-786.
|
[4] |
Boivin MJ, Ruel TD, Boal HE, et al. HIV-subtype A is associated with poorer neuropsychological performance compared with subtype D in antiretroviral therapy-naive Ugandan children[J]. AIDS,2010,24(8):1163-1170.
|
[5] |
Cole JH, Underwood J, Caan MW, et al. Increased brain-predicted aging in treated HIV disease[J]. Neurology,2017,88(14):1349-1357.
|
[6] |
Wade BS, Valcour VG, Wendelken-Riegelhaupt L, et al. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort[J]. Neuroimage Clin,2015,9:564-573.
|
[7] |
Jayadev S, Garden GA. Host and viral factors influencing the pathogenesis of HIV-associated neurocognitive disorders[J]. J Neuroimmune Pharmacol,2009,4(2):175-189.
|
[8] |
Spector SA, Singh KK, Gupta S, et al. APOE epsilon4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV-infected plasma donors[J]. AIDS,2010,24(10):1471-1479.
|
[9] |
Morgan EE, Woods SP, Letendre SL, et al. Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders[J]. J Neurovirol,2013,19(2):150-156.
|
[10] |
Barnes LL, Arvanitakis Z, Yu L, et al. Apolipoprotein E and change in episodic memory in blacks and whites[J]. Neuroepidemiology,2013,40(3):211-219.
|
[11] |
Tuminello ER, Han SD. The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations[J]. Int J Alzheimers Dis,2011,2011:726197.
|
[12] |
Ho EL, Spudich SS, Lee E, et al. Minocycline fails to modulate cerebrospinal fluid HIV infection or immune activation in chronic untreated HIV-1 infection: results of a pilot study[J]. AIDS Res Ther,2011,8:17.
|
[13] |
Chai Q, Jovasevic V, Malikov V, et al. HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration[J]. Nat Commun,2017,8(1):1522.
|
[14] |
Sevigny JJ, Albert SM, McDermott MP, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia[J]. Neurology,2004,63(11):2084-2090.
|
[15] |
Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii aging with HIV-1 cohort[J]. Neurology,2004,63(5):822-827.
|
[16] |
Cole MA, Margolick JB, Cox C, et al. Longitudinally preserved psychomotor performance in long-term asymptomatic HIV-infected individuals[J]. Neurology,2007,69(24):2213-2220.
|
[17] |
Millikin CP, Rourke SB, Halman MH, et al. Fatigue in HIV/AIDS is associated with depression and subjective neurocognitive complaints but not neuropsychological functioning[J]. J Clin Exp Neuropsychol,2003,25(2):201-215.
|
[18] |
Brew BJ, Pemberton L, Blennow K, et al. CSF amyloid beta42 and tau levels correlate with AIDS dementia complex[J]. Neurology,2005,65(9):1490-1492.
|
[19] |
Gisslén M, Krut J, Andreasson U, et al. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection[J]. BMC Neurol,2009,9:63.
|
[20] |
Valcour V, Paul R, Neuhaus J, et al. The Effects of Age and HIV on Neuropsychological Performance[J]. J Int Neuropsychol Soc,2011,17(1):190-195.
|
[21] |
Ciccarelli N, Fabbiani M, Baldonero E, et al. Effect of aging and human immunodeficiency virus infection on cognitive abilities[J]. J Am Geriatr Soc,2012,60(11):2048-2055.
|
[22] |
Cysique LA, Waters EK, Brew BJ. Central nervous system antiretroviral efficacy in HIV infection: a qualitative and quantitative review and implications for future research[J]. BMC Neurol,2011,11:148.
|
[23] |
Su T, Mutsaerts HJ, Caan MW, et al. Cerebral blood flow and cognitive function in HIV-infected men with sustained suppressed viremia on combination antiretroviral therapy[J]. AIDS,2017,31(6):847-856.
|
[24] |
Fabbiani M, Ciccarelli N, Tana M, et al. Cardiovascular risk factors and carotid intima-media thickness are associated with lower cognitive performance in HIV-infected patients[J]. HIV Med,2013,14(3):136-144.
|
[25] |
McCutchan JA, Marquie-Beck JA, Fitzsimons CA, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder[J]. Neurology,2012,78(7):485-492.
|
[26] |
Satz P, Morgenstern H, Miller EN, et al. Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohort Study (MACS)[J]. J Acquir Immune Defic Syndr,1993,6(5):503-511.
|
[27] |
Becker JT, Kingsley LA, Molsberry S, et al. Cohort Profile: Recruitment cohorts in the neuropsychological substudy of the Multicenter AIDS Cohort Study[J]. Int J Epidemiol,2015,44(5):1506- 1516.
|
[28] |
Rabkin JG, Ferrando SJ, van Gorp W, et al. Relationships among apathy, depression, and cognitive impairment in HIV/AIDS[J]. J Neuropsychiatry Clin Neurosci,2000,12(4):451-457.
|
[29] |
Valcour V, Sithinamsuwan P, Letendre S, et al. Pathogenesis of HIV in the central nervous system[J]. Curr HIV/AIDS Rep,2011,8(1):54-61.
|
[30] |
Robertson KR, Su Z, Margolis DM, et al. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort[J]. Neurology,2010,74(16):1260-1266.
|
[31] |
Crystal HA, Weedon J, Holman S, et al. Associations of cardiovascular variables and HAART with cognition in middle-aged HIV-infected and uninfected women[J]. J Neurovirol,2011,17(5):469-476.
|
[32] |
Xu Z, Asahchop EL, Branton WG, et al. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology[J]. PLoS Pathog,2017,13(6):e1006360.
|
[33] |
Kiko T, Nakagawa K, Tsuduki T, et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease[J]. J Alzheimers Dis,2014,39(2):253-259.
|