切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 288 -297. doi: 10.3877/cma.j.issn.1674-1358.2025.05.005

论著

应用机器学习建立脓毒性休克患者住院28天死亡预测模型及验证
钱何布1,(), 朱林2, 姚月平1, 姚峰1, 李玉卓1, 马家驹1, 晏倩1, 倪晓艳3   
  1. 1 215200 苏州市,苏州大学附属苏州九院重症医学科
    2 215200 苏州市,苏州大学附属苏州九院中心实验室
    3 215200 苏州市,苏州大学附属苏州九院感染管理科
  • 收稿日期:2025-05-18 出版日期:2025-10-15
  • 通信作者: 钱何布

Establishment and validation of a prediction model for 28-day in-hospital mortality of patients with septic shock using machine learning

Hebu Qian1,(), Lin Zhu2, Yueping Yao1, Feng Yao1, Yuzhuo Li1, Jiaju Ma1, Qian Yan1, Xiaoyan Ni3   

  1. 1 Department of Critical Care Medicine, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
    2 Department of Central Laboratory, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
    3 Department of Infection Management, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
  • Received:2025-05-18 Published:2025-10-15
  • Corresponding author: Hebu Qian
引用本文:

钱何布, 朱林, 姚月平, 姚峰, 李玉卓, 马家驹, 晏倩, 倪晓艳. 应用机器学习建立脓毒性休克患者住院28天死亡预测模型及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(05): 288-297.

Hebu Qian, Lin Zhu, Yueping Yao, Feng Yao, Yuzhuo Li, Jiaju Ma, Qian Yan, Xiaoyan Ni. Establishment and validation of a prediction model for 28-day in-hospital mortality of patients with septic shock using machine learning[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2025, 19(05): 288-297.

目的

应用机器学习(ML)建立脓毒性休克患者住院28 d死亡预测模型,并验证其有效性。

方法

对2019年1月至2024年6月苏州大学附属苏州九院收治的脓毒性休克患者的临床资料进行回顾性分析。根据患者入院28 d的预后分为死亡组(104例)和生存组(161例)。使用最小绝对收缩选择算子(LASSO)算法筛选脓毒性休克患者住院28 d死亡的关键变量。总体数据以3∶1比例随机分配到训练集和测试集。通过比较8种不同的机器学习算法,选择最优算法来重建脓毒性休克患者住院28 d死亡的预测模型。使用受试者工作特征(ROC)曲线下面积(AUC)和临床决策曲线(DCA)评估模型的性能。Shapley加性解释(SHAP)算法用于模型解释。

结果

共纳入265例脓毒性休克患者。通过临床初步筛选,模型最初包含47个变量,经过LASSO模型进一步筛选后,确定9个变量用于后续模型开发。在构建的8个模型中,径向基函数支持向量机(RSVM)模型表现出最佳的整体性能。使用最优算法重建后,训练集和测试集的AUC分别为0.85和0.77,准确率分别为78.8%和71.6%,召回率分别为75.6%和69.2%,DCA曲线均显示出更高的净收益。Shapley加性解释(SHAP值)和变量的优先级排序显示,涉及4个或更多器官的多器官功能障碍综合征是最重要的特征变量,其次是急性生理学和慢性健康状况评分Ⅱ和序贯器官衰竭评估(SOFA)评分。

结论

通过机器学习建立模型可以准确预测脓毒性休克患者住院28 d死亡风险,改善其风险分层,从而指导临床医生采取适当的干预措施。

Objective

To establish a prediction model for 28-day in-hospital mortality of patients with septic shock using machine learning (ML) and verify its effectiveness.

Methods

The clinical data of patients with septic shock admitted to Suzhou Ninth Hospital Affiliated to Soochow University from January 2019 to June 2024 were analyzed, retrospectively. Patients were divided into death group (104 cases) and survival group (161 cases) based on their prognosis at 28 days after admission. The key variables associated with 28-day in-hospital mortality were screened by the least absolute shrinkage and selection operator (LASSO) algorithm. The entire dataset was randomly divided into training set and test set with a ratio of 3∶1. By comparing eight different ML algorithms, the optimal algorithm was selected to construct the prediction model. The model performance were evaluated by area under the receiver operating characteristic (ROC) curve (AUC) and clinical decision curve analysis (DCA). The model was interpreted by Shapley additive exPlanations (SHAP) algorithm.

Results

Total of 265 patients with septic shock were enrolled. Forty-seven variables were initially included based on clinical preliminary screening; nine key variables were selected by the LASSO model for subsequent model development. Among the eight models constructed, the radial basis function-support vector machine (RSVM) model demonstrated the best overall performance. After optimization by this algorithm, the AUCs were 0.85 for the training set and 0.77 for the test set; the accuracies were 78.8% and 71.6%, respectively; the recall rates were 75.6% and 69.2%, respectively; and the DCA curves indicated higher net benefits. SHAP value analysis revealed that septic shock complicated with multiple organ dysfunction syndrome (involving four or more organs) was the most important predictive variable, followed by the acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) score and the sequential organ failure assessment (SOFA) score.

Conclusions

Machine learning could be used to build an accurate prediction model for the 28-day in-hospital mortality risk of patients with septic shock. This model could improve the risk stratification and may guide clinicians in implementing appropriate interventions.

图1 本研究工作流程图
表1 存活组和死亡组脓毒性休克患者的临床特征和指标
临床特征和指标 死亡组(104例) 存活组(161例) 统计量 P
性别(例,男/女) 32/72 70/91 χ2=3.791 0.052
年龄 [MP25P75),岁] 74.0(66.0,79.5) 72.0(62.0,79.0) Z=-1.677 0.094
感染部位 [例(%)]
肺部 53(51.0) 66(41.0) χ2=2.151 0.143
肝胆系统 7(6.7) 30(18.6) χ2=6.494 0.011
腹盆腔 26(25.0) 39(24.2) χ2=0.000 0.990
泌尿系统 4(3.8) 19(11.8) χ2=4.091 0.043
消化道 5(4.8) 4(2.5) χ2=0.452 0.501
皮肤软组织 11(10.6) 5(3.1) χ2=4.970 0.026
基础疾病 [例(%)]
高血压 52(50.0) 74(46.0) χ2=0.267 0.605
糖尿病 36(34.6) 55(34.2) χ2=0.000 0.990
心血管疾病 29(27.9) 26(16.1) χ2=4.601 0.032
COPD 11(10.6) 8(5.0) χ2=2.202 0.138
肿瘤 21(20.2) 23(14.3) χ2=1.194 0.275
中枢神经系统疾病 28(26.9) 36(22.4) χ2=0.491 0.484
CKD 22(21.2) 12(7.5) χ2=9.415 0.002
多病共存 60(57.7) 64(39.8) χ2=7.464 0.006
病情评分 [MP25P75)]
APACHE Ⅱ 25.5(20.0,33.0) 19.0(14.0,24.0) Z=-6.586 <0.001
SOFA 11.0(8.0,13.0) 8.0(6.0,9.0) Z=-6.811 <0.001
SI 1.3(1.0,1.6) 1.1(0.9,1.4) Z=-1.990 0.047
SIRS 3.0(2.0,3.0) 2.0(2.0,3.0) Z=-1.587 0.113
入院24 h实验室指标 [MP25P75)]
PaO2/FiO2(mmHg) 178.1(117.9,308.5) 216.5(152.5,305.0) Z=2.262 0.024
Lac(mmol/L) 3.8(2.0,8.8) 3.1(2.0,5.0) Z=-2.366 0.018
中性粒细胞(×109/L) 10.2(5.5,14.9) 10.9(6.2,17.3) Z=1.585 0.113
淋巴细胞(×109/L) 0.6(0.3,1.0) 0.6(0.4,0.9) Z=0.469 0.640
NLR 14.7(8.6,26.9) 15.6(9.1,30.8) Z=0.469 0.640
血小板(×109/L) 149.5(97.0,189.5) 149.0(98.0,231.0) Z=0.864 0.388
PCT(ng/ml) 10.0(2.5,62.3) 16.9(3.1,63.1) Z=0.337 0.736
白细胞介素-6(pg/ml) 399.0(80.0,3 683.0) 236.0(58.0,1 400.0) Z=-1.738 0.082
CRP(mg/L) 150.5(60.0,257.9) 159.4(76.4,255.4) Z=0.213 0.832
D-二聚体(mg/L) 3.5(1.6,10.7) 3.2(1.4,6.9) Z=-1.351 0.177
BNP(pg/ml) 368.2(168.4,807.1) 265.2(116.0,511.0) Z=-1.915 0.056
LDH(U/L) 417.0(267.0,808.0) 299.0(233.0,430.0) Z=-4.066 <0.001
胆碱酯(U/L) 3 313.0(2 350.5,4 844.0) 3 892.0(2 675.0,5 489.0) Z=1.895 0.058
血浆白蛋白(g/L) 28.2(25.4,33.0) 29.9(26.3,32.6) Z=1.727 0.084
主要干预措施 [例(%)]
急诊手术 21(20.2) 54(33.5) χ2=4.910 0.027
入院24 h输液总量≥5 L 34(32.7) 48(29.8) χ2=0.129 0.720
有创机械通气 95(91.3) 100(62.1) χ2=26.298 <0.001
CRRT 44(42.3) 25(15.5) χ2=22.159 <0.001
MODS累及器官损害数量 [例(%)] χ2=38.622 <0.001
1个 7(6.7) 31(19.3)
2个 9(8.7) 48(29.8)
3个 18(17.3) 32(19.9)
≥4个 70(67.3) 50(31.1)
MODS累及器官和系统 [例(%)]
肾脏 82(78.8) 86(53.4) χ2=16.529 <0.001
肝脏 55(52.9) 51(31.7) χ2=10.974 <0.001
呼吸系统 61(58.7) 37(23.0) χ2=32.987 <0.001
中枢神经系统 50(48.1) 29(18.0) χ2=25.876 <0.001
凝血系统 68(65.4) 79(49.1) χ2=6.165 0.013
表2 训练集和测试集脓毒性休克患者的临床资料
临床资料 训练集(198例) 测试集(67例) 统计量 P
性别(例,男/女) 80/118 22/45 χ2=0.913 0.339
年龄 [MP25P75),岁] 75.0(64.0,79.0) 70.0(58.5,78.0) Z=-1.778 0.076
感染部位 [例(%)]
肺部 89(44.9) 30(44.8) χ2=0.000 1.000
肝胆系统 30(15.2) 7(10.4) χ2=0.572 0.449
腹盆腔 46(23.2) 19(28.4) χ2=0.461 0.497
泌尿系统 16(8.1) 7(10.4) χ2=0.118 0.731
消化道 7(3.5) 2(3.0) χ2=0.000 1.000
皮肤软组织 11(5.6) 5(7.5) χ2=0.073 0.787
基础疾病 [例(%)]
高血压 94(47.5) 32(47.8) χ2=0.000 1.000
糖尿病 66(33.3) 25(37.3) χ2=0.197 0.657
心血管疾病 43(21.7) 12(17.9) χ2=0.240 0.624
COPD 15(7.6) 4(6.0) χ2=0.028 0.868
肿瘤 34(17.2) 10(14.9) χ2=0.056 0.812
中枢神经系统疾病 50(25.3) 14(20.9) χ2=0.308 0.579
CKD 24(12.1) 10(14.9) χ2=0.146 0.702
多病共存 97(49.0) 27(40.3) χ2=1.190 0.275
病情评分 [MP25P75)]
APACHE Ⅱ 22.0(16.0,27.0) 19.0(15.5,24.5) Z=-1.466 0.143
SOFA 9.0(7.0,12.0) 9.0(6.0,10.0) Z=-0.636 0.525
SI 1.2(0.9,1.4) 1.2(1.0,1.6) Z=1.191 0.234
SIRS 3.0(2.0,3.0) 2.0(2.0,3.0) Z=-0.696 0.487
入院24 h实验室指标 [MP25P75)]
PaO2/FiO2(mmHg) 203.8(139.0,280.0) 233.0(129.8,322.2) Z=0.907 0.365
Lac(mmol/L) 3.4(2.0,5.9) 2.5(1.9,6.3) Z=-0.856 0.393
中性粒细胞(×109/L) 10.4(6.1,16.6) 11.8(5.4,16.1) Z=0.206 0.838
淋巴细胞(×109/L) 0.6(0.4,1.0) 0.6(0.3,0.8) Z=-0.764 0.446
NLR 14.9(9.0,29.9) 15.9(9.0,29.1) Z=0.122 0.904
血小板(×109/L) 150.0(98.0,223.0) 148.0(100.0,231.5) Z=0.074 0.942
PCT(ng/ml) 12.3(2.6,60.0) 22.5(4.0,96.4) Z=1.276 0.202
白细胞介素-6(pg/ml) 262.5(56.0,2 161.0) 285.0(99.0,1 713.5) Z=0.406 0.686
CRP(mg/L) 148.8(65.9,240.4) 193.2(83.2,293.0) Z=1.906 0.057
D-二聚体(mg/L) 3.3(1.5,8.4) 3.2(1.2,8.8) Z=-0.626 0.532
BNP(pg/ml) 277.5(153.9,594.1) 350.0(131.6,721.4) Z=0.827 0.409
LDH(U/L) 321.0(239.0,532.0) 382.0(237.0,485.0) Z=0.101 0.920
胆碱酯酶(U/L) 3 615.0(2 555.0,5 169.0) 3 601.0(2 360.5,5 255.0) Z=0.175 0.862
血浆白蛋白(g/L) 29.2(25.9,33.0) 30.1(26.2,32.3) Z=0.390 0.697
主要干预措施 [例(%)]
急诊手术 56(28.3) 19(28.4) χ2=0.000 1.000
入院24 h输液总量≥5 L 60(30.3) 22(32.8) χ2=0.055 0.814
有创机械通气 144(72.7) 51(76.1) χ2=0.148 0.701
CRRT 50(25.3) 19(28.4) χ2=0.115 0.734
MODS累及器官损害数量 [例(%)] χ2=4.857 0.183
1个 26(13.1) 12(17.9)
2个 47(23.7) 10(14.9)
3个 33(16.7) 17(25.4)
≥4个 92(46.5) 28(41.8)
MODS累及器官和系统 [例(%)] χ2=0.000 1.000
肾脏 126(63.6) 42(62.7)
肝脏 81(40.9) 25(37.3) χ2=0.141 0.708
呼吸系统 75(37.9) 23(34.3) χ2=0.140 0.708
中枢神经系统 62(31.3) 17(25.4) χ2=0.584 0.445
凝血系统 108(54.5) 39(58.2) χ2=0.144 0.704
住院28 d死亡 [例(%)] 78(39.4) 26(38.8) χ2=0.000 1.000
图2 LASSO 回归分析筛选脓毒性休克患者住院28 d死亡的关键变量 注:A:不同临床变量的LASSO回归系数图,采用了5折交叉验证,其中最优的λ产生了9个非零系数,图中每条彩色曲线代表一个变量的回归系数随着log(λ)增大如何逐渐趋近于0。B:LASSO回归的交叉验证曲线,在最小均方误差和最小距离的标准误差处绘制了垂直虚线,图中红点是每个log(λ)处的平均均方误差,上下的误差线表示标准误
表3 训练集和测试集的kappa
表4 RSVM模型的训练集和测试集结果
图3 RSVM模型预测脓毒性休克住院28 d死亡的ROC曲线 注:该模型的性能由RSVM算法建立。A:训练集,B:测试集
图4 RSVM模型的临床决策曲线(DCA)分析 注:该模型的性能由RSVM算法建立。A:训练集,B:测试集
图5 RSVM模型结果的解释 注:A:9个关键变量的SHAP图:每个特征对模型输出的影响。每行中的每个点代表1例患者,图中的点分布得越分散,提示该变量对模型的影响就越大B:9个关键变量的重要性排名图。MODS:多器官功能障碍综合征,APACHE Ⅱ:急性生理学及慢性健康状况评分Ⅱ,SOFA:序贯器官衰竭评估,CRRT:连续性肾脏替代治疗,CNS:中枢神经系统,CKD:慢性肾脏病
[1]
Schlapbach LJ, Watson RS, Sorce LR, et al. International consensus criteria for pediatric sepsis and septic shock[J]. JAMA,2024,331(8):665-674.
[2]
Martin-Loeches I, Singer M, Leone M. Sepsis: key insights, future directions, and immediate goals. A review and expert opinion[J]. Intensive Care Med,2024,50(12):2043-2049.
[3]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet,2020,395(10219):200-211.
[4]
邵慧娟, 王炎, 张宏伟, 等. 脓毒症患者28 d死亡危险因素分析及预测模型的构建与验证[J]. 中华危重病急救医学,2024,36(5):478-484.
[5]
Cui SH, Liang CY, Hao YF. Analysis of risk factors affecting the prognosis of patients with sepsis and construction of nomogram prediction model[J]. Eur Rev Med Pharmacol Sci,2024,28(6):2409-2418.
[6]
Kamath S, Hammad Altaq H, Abdo T. Management of sepsis and septic shock: What have we learned in the last two decades?[J]. Microorganisms,2023,11(9):2231.
[7]
Lee JH, Kim SH, Jang JH, et al. Clinical usefulness of biomarkers for diagnosis and prediction of prognosis in sepsis and septic shock[J]. Medicine (Baltimore),2022,101(48):e31895.
[8]
Ramos Corrêa Pinto L, Azzolin KO, Lucena AF, et al. Septic shock: Clinical indicators and implications to critical patient care[J]. J Clin Nurs,2021,30(11-12):1607-1614.
[9]
Suh JW, Kim MJ, Kim JH. Risk factors of septic shock development and thirty-day mortality with a predictive model in adult candidemia patients in intensive care units[J]. Infect Dis (Lond),2021,53(12):908-919.
[10]
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016[J]. Intensive Care Med,2017,43(3):304-377.
[11]
Qiu X, Lei YP, Zhou RX. SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis[J]. Expert Rev Anti Infect Ther,2023,21(8):891-900.
[12]
Zhang G, Shao F, Yuan W, et al. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers[J]. Eur J Med Res,2024,29(1):156.
[13]
Sakr Y, Jaschinski U, Wittebole X, et al. Sepsis in Intensive Care Unit patients: worldwide data from the Intensive Care over Nations Audit[J]. Open Forum Infect Dis,2018,5(12):ofy313.
[14]
Carsetti A, Antolini R, Casarotta E, et al. Shock index as predictor of massive transfusion and mortality in patients with trauma: a systematic review and meta-analysis[J]. Crit Care,2023,27(1):85.
[15]
Moreno R, Rhodes A, Piquilloud L, et al. The sequential organ failure assessment (SOFA) score: has the time come for an update?[J]. Crit Care,2023,27(1):15.
[16]
Liu XZ, Duan M, Huang HD, et al. Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: a multicenter retrospective study[J]. Front Endocrinol (Lausanne),2023,14:1184190.
[17]
Nofal MA, Shitawi J, Altarawneh HB, et al. Recent trends in septic shock management: a narrative review of current evidence and recommendations[J]. Ann Med Surg (Lond),2024,86(8):4532-4540.
[18]
Bauer M, Gerlach H, Vogelmann T, et al. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019--results from a systematic review and Meta-analysis[J]. Crit Care,2020,24(1):239.
[19]
Namgung M, Ahn C, Park Y, et al. Mortality among adult patients with sepsis and septic shock in Korea: a systematic review and meta-analysis[J]. Clin Exp Emerg Med,2023,10(2):157-171.
[20]
汪洋, 陈上仲, 胡才宝, 等. 基于随机森林法的严重脓毒症/脓毒性休克预后评估模型对患者28 d死亡的预测价值[J]. 中华危重病急救医学,2017,29(12):1071-1076.
[21]
李少军, 郭鹏飞, 唐甜, 等. 开发MIMIC-Ⅲ脓毒性休克患者死亡风险预测模型的队列研究[J]. 中华危重病急救医学,2022,34(11):1127-1131.
[22]
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med,2019,25(1):44-56.
[23]
Hu C, Li L, Huang W, et al. Interpretable machine learning for early prediction of prognosis in sepsis: A discovery and validation study[J]. Infect Dis Ther,2022,11(3):1117-1132.
[24]
Alabi RO, Youssef O, Pirinen M, et al. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review[J]. Artif Intell Med,2021,115:102060.
[25]
Aghakhani A, Yousefi M, Yekaninejad MS. Machine learning models for predicting sudden sensorineural hearing loss outcome: A systematic review[J]. Ann Otol Rhinol Laryngol,2024,133(3):268-276.
[26]
Hu Q, Chen Y, Zou D, et al. Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis[J]. Front Pharmacol,2024,15:1497397.
[27]
Ma JH, You SF, Xue JS, et al. Computer-aided diagnosis of cervical dysplasia using colposcopic images[J]. Front Oncol,2022,12:905623.
[28]
Matsumoto T, Fukuzawa M, Itoi T, et al. Targeted metabolomic profiling of plasma samples in gastric cancer by liquid chromatography-mass spectrometry[J]. Digestion,2023,104(2):97-108.
[29]
Tang F, Zhao XL, Xu LY, et al. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome[J]. Biomed Pharmacother,2024,178:117180.
[30]
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis[J]. Ann Intensive Care,2024,14(1):147.
[31]
Ogica A, Burdelski C, Rohde H, et al. Necrotizing soft tissue infections in intensive care[J]. J Intensive Care Med,2022,37(3):393-400.
[32]
连洁, 谈朦, 陈隆望, 等. 血管内皮-钙黏蛋白在脓毒症患者病情严重程度评估中的价值[J]. 中华危重病急救医学,2022,34(8):808-813.
[33]
黄琴, 廖晓斌, 吴贵全. 急性生理与慢性健康Ⅱ评分联合血清降钙素原, D-二聚体, 乳酸清除率预测重症脓毒症患者预后不良[J/CD]. 中华实验和临床感染病杂志(电子版),2021,15(6):394-401.
[34]
汪洋, 陈上仲, 胡才宝, 等. 凝血功能异常在血小板减少导致脓毒性休克患者死亡中的作用[J]. 中华危重病急救医学,2023,35(12):1241-1244.
[1] 罗兵, 董凤群, 牛艺臻, 王锟, 程志华, 刘宏强. 胎儿超声心动图在单纯性肺动脉瓣狭窄及预后评估中的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 740-747.
[2] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[3] 陈系东, 王绍闯, 赵何伟, 王硕, 袁维栋. 高龄BCLC B期肝癌患者常规TACE术后急性肝功能恶化的危险因素研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 689-692.
[4] 贺雅莉, 黄丽, 杨培娟. 功能保留手术在低位直肠癌治疗中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 701-704.
[5] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[6] 谷瑞辰, 林福杨, 刘永达. 术前尿培养阴性患者PCNL术后尿路感染的预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 772-777.
[7] 周福安, 陈戬. 经皮肾镜碎石取石术后肾功能恶化的围术期影响因素研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 792-795.
[8] 陈伟东, 赵力, 罗辉, 张汉荣, 李金雨. 经皮肾镜碎石取石术后引起胸腔积液的防治[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 796-799.
[9] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[10] 杨刚, 黄徐建, 朱建交, 熊永福, 李敬东. 两种不同类型肝门周围胆管癌临床病理特征及生存预后[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 931-938.
[11] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[12] 高兴梅, 周洁容, 杨溢, 张孟祥, 张仲谋, 李斌. 重症肺炎患者血磷水平轨迹与短期预后之间的关系[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 479-485.
[13] 皇立媛, 浦洁, 王苏贵, 陈婷婷, 朱德慧, 胡雪. 中青年脑卒中患者应激障碍风险预测模型的构建与验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 504-512.
[14] 姜彤彤, 戎萍, 马融, 付乾芳, 张亚同, 赵书艺, 刘晖, 马榕, 李悦, 李瑞本. 抽动障碍儿童呼吸道感染后的临床特征及抽动症状加重的危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 426-432.
[15] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?