切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 214 -222. doi: 10.3877/cma.j.issn.1674-1358.2025.04.004

论著

两种磁珠法核酸提取试剂在病原靶向二代测序中的性能
程建军, 萧尔雅, 邹珍珍, 韩清珍, 王琳()   
  1. 215123 苏州市,苏州大学附属第四医院(苏州市独墅湖医院)临床检测中心
  • 收稿日期:2024-11-19 出版日期:2025-08-15
  • 通信作者: 王琳
  • 基金资助:
    苏州工业园区医疗卫生创新研究项目(No. CXYJ2024A08); 苏州姑苏卫生人才计划重点人才(No.(2024)108); 苏州工业园区卫生人才支持计划(No.(2024)55)

Performance comparison and evaluation of two magnetic bead-based nucleic acid extraction reagents for pathogen-targeted next-generation sequencing

Jianjun Cheng, Erya Xiao, Zhenzhen Zou, Qingzhen Han, Lin Wang()   

  1. Clinical Laboratory Center, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou 215123, China
  • Received:2024-11-19 Published:2025-08-15
  • Corresponding author: Lin Wang
引用本文:

程建军, 萧尔雅, 邹珍珍, 韩清珍, 王琳. 两种磁珠法核酸提取试剂在病原靶向二代测序中的性能[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(04): 214-222.

Jianjun Cheng, Erya Xiao, Zhenzhen Zou, Qingzhen Han, Lin Wang. Performance comparison and evaluation of two magnetic bead-based nucleic acid extraction reagents for pathogen-targeted next-generation sequencing[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2025, 19(04): 214-222.

目的

比较两种磁珠法核酸提取试剂在病原靶向二代测序(ptNGS)检测肺泡灌洗液(BF)和外周血(PB)样本的实验参数及检测结果差异,选择较优的核酸提取试剂并评估其在ptNGS检测中的适用性,为不同样本类型选择适用的核酸提取试剂提供参考。

方法

选择两种代表性磁珠法核酸提取试剂盒KitA和KitB,对已知培养或实时荧光定量PCR(qPCR)结果的12例BF和8例PB样本分别取相同体积进行ptNGS检测,流程主要包括核酸提取、文库构建、上机测序和结果分析。采用Wilcoxon配对秩检验系统比较KitA与KitB在样本(BF和PB)检测过程中的实验参数(包括核酸提取总质量、吸光度(A260/280、文库浓度、样本测序数据质量指标Q30等)和病原检出拷贝数,以明确更适用于BF与PB样本ptNGS检测的磁珠法提取试剂。通过ptNGS检测的准确度、精密度、检出限和常规抗干扰能力进一步评估提取试剂盒的适用性。

结果

KitA在BF的核酸提取总量显著高于KitB((W=-66、P=0.001),而在PB的核酸提取总量与KitB差异无统计学意义(W=19、P=0.063)。KitB在BF和PB样本核酸的吸光度A260/280显著优于KitA(BF:W=54、P=0.014,PB:W=21、P=0.031)。KitA与KitB提取核酸构建的文库浓度和片段大小差异均无统计学意义;KitA与KitB测序数据在Q30、引物二聚体百分比和Real align百分比等差异均无统计学意义(P均> 0.05)。KitA与KitB病原体检出数量和种类一致;KitA提取的BF检出病原体拷贝数显著高于KitB(W=-301、P < 0.001),但两者在PB中病原拷贝数差异无统计学意义(W=-3、P=0.844)。进一步选择更适用的核酸提取试剂盒KitA评估其在ptNGS检测BF和PB中的适用性,使用KitA进行ptNGS检测的阳性符合率为97.14%,漏检率为2.86%,总体符合率为95%;批内精密度和批间精密度均< 10%;细菌和真菌检出限均为100拷贝/ml,病毒检出限均为1 000拷贝/ml;样本中的非靶标核酸(包括人源核酸)对ptNGS定性结果无干扰。

结论

KitA提取方式在BF的ptNGS检测中整体优于KitB,KitA和KitB在PB的ptNGS检测中整体实验参数如核酸提取总质量、文库浓度和测序数据质量指标Q30等基本一致,KitA在ptNGS检测中准确度、精密度、检出限和常规抗干扰能力的性能评估中均满足临床检测需求。

Objective

To evaluate and compare the experimental parameters and resultant differences of two magnetic bead-based nucleic acid extraction reagents in pathogen-targeted next-generation sequencing (ptNGS) for the detection of bronchoalveolar lavage fluid (BF) and peripheral blood (PB) samples, and to identify the more effective nucleic acid extraction reagent and assess its applicability in ptNGS detection, in order to offer guidance for the selection of appropriate nucleic acid extraction reagents tailored to various sample types.

Methods

Two representative magnetic bead-based nucleic acid extraction kits, designated as KitA and KitB were employed to conduct ptNGS detection on 12 BF samples and 8 PB samples, all of which had established culture or real-time fluorescence quantitative PCR (qPCR) results. An equal volume was utilized for each sample. The methodology encompassed several key stages, including nucleic acid extraction, library construction, sequencing and subsequent result analysis. The experimental parameters, including total nucleic acid extraction mass, absorbance (A) 260/280, library concentration and sample sequencing data quality index Q30; and pathogen detection copy numbers between KitA and KitB during the detection process of samples (BF and PB) were systematically compared by Wilcoxon signed-rank tests, and the magnetic bead extraction reagent which was more suitable for ptNGS detection of BF and PB samples were clarified. The suitability of the extraction kit was further evaluated by the accuracy, precision, detection limit and conventional anti-interference ability of ptNGS detection.

Results

The total amount of nucleic acid extracted in BF by KitA was significantly higher than that of KitB (W=-66, P=0.001), but without significant difference in PB (W=19, P=0.063). However, the absorbance A260/280 of KitB nucleic acid in BF and PB samples were significantly better than those of KitA (BF: W=54, P=0.014; PB: W=21, P=0.031). But the library concentration and fragment size of the libraries constructed by KitA and KitB nucleic acid were not significantly different; sequencing data quality metrics including Q30 scores, primer dimer percentage and percentage of Real aligne were not significantly different between the two extraction methods (all P > 0.05). The number and species of KitA and KitB detected in the pathogen were consistent. The pathogen copy number detected by KitA in BF was significantly higher than that of KitB (W=-301, P < 0.001), however, there was no statistically significant difference in pathogen copy number in PB between the two extraction methods (W=-3, P=0.844). Further, a more suitable nucleic acid extraction kit KitA was selected to evaluate its suitability for ptNGS detection in BF and PB. The positive concordance rate of ptNGS detected by KitA was 97.14%, the missed detection rate was 2.86%, and the overall concordance rate was 95%. Both intra-batch and inter-batch precision exhibited coefficients of variation below 10%. The limit of detection (LOD) was established at 100 copies/ml for bacterial and fungal targets, and 1 000 copies/ml for viral targets. Notably, non-target nucleic acids (including human-derived DNA/RNA) in the samples did not interfere with the qualitative results of ptNGS analysis.

Conclusions

For ptNGS detection in BF samples, Kit A demonstrated overall superior performance compared with Kit B across all evaluated parameters. In PB samples, both kits were consistent in overall experimental parameters, including total nucleic acid yield, library concentration and sequencing data quality indicators Q30. KitA meets the requirements of clinical testing in terms of accuracy, precision, detection limit and routine anti-interference capability in the performance evaluation of ptNGS detection

表1 KitA和KitB在ptNGS检测BF样本中提取核酸质量及实验过程参数[MP25P75)]
表2 KitA和KitB在ptNGS检测PB样本中提取核酸质量及实验参数[MP25P75)]
图1 KitA与KitB在BF样本中病原检出(lg拷贝数)差异堆积图注:两栏分别表示KitA和KitB提取BF样本的ptNGS检出病原体种类、数量及病原的lg(拷贝数),上方为KitA提取的ptNGS检出结果,下方表示KitB提取的ptNGS检出结果。柱形颜色的种类数表示某病原物种在所有样本中被检测到的频数,柱形的长度表示病原的lg(拷贝数)。Wilcoxon符号秩检验结果显示:KitA在BF样本的提取检出病原拷贝数显著高于KitB(W=-301、P<0.001)
图2 KitA与KitB在PB样本中病原检出(lg拷贝数)差异堆积图注:两栏分别表示KitA和KitB提取PB样本的ptNGS检出病原体种类、数量及病原的lg(拷贝数),上方为KitA提取的ptNGS检出结果,下方表示KitB提取的ptNGS检出结果。柱形颜色的种类数表示某病原物种在所有样本中被检测到的频数,柱形的长度表示病原的lg(拷贝数)。Wilcoxon符号秩检验结果显示,KitA在PB样本的提取检出病原拷贝数总体上与KitB相当(W=3、P=0.844)
表3 KitA在ptNGS检测中精密度和检出限的性能评估
[1]
Yin Y, Zhu P, Guo Y, et al. Enhancing lower respiratory tract infection diagnosis: implementation and clinical assessment of multiplex PCR-based and hybrid capture-based targeted next-generation sequencing[J]. EBio Medicine,2024,107:105307.
[2]
赵聪琳,刘凯,周永召. 靶向二代测序技术与宏基因组二代测序技术在病原微生物检测中的应用[J]. 中华预防医学杂志,2024,58(1):114-121.
[3]
张彩霞,叶黎文,黄春艳. 病原体靶向测序技术在疑似肺部感染患者中的应用价值分析[J]. 解放军医学杂志,2024,49(9):1022-1028.
[4]
Zhang P, Liu B, Zhang S, et al. Clinical application of targeted next-generation sequencing in severe pneumonia: a retrospective review[J]. Crit Care,2024,28(1):225.
[5]
Huang C, Huang Y, Wang Z, et al. Multiplex PCR-based next generation sequencing as a novel, targeted and accurate molecular approach for periprosthetic joint infection diagnosis[J]. Front Microbiol,2023,14:1181348.
[6]
Gao D, Hu Y, Jiang X, et al. Applying the pathogen-targeted next-generation sequencing method to pathogen identification in cerebrospinal fluid[J]. Ann Transl Med,2021,9(22):1675.
[7]
Li S, Tong J, Liu Y, Shen W, et al. Targeted next generation sequencing is comparable with metagenomic next generation sequencing in adults with pneumonia for pathogenic microorganism detection[J]. J Infect,2022,85(5):e127-e129.
[8]
Gaston DC, Miller HB, Fissel JA, et al. Evaluation of metagenomic and targeted next-generation sequencing workflows for detection of respiratory pathogens from bronchoalveolar lavage fluid specimens[J]. J Clin Microbiol,2022,60(7):e0052622.
[9]
Wei M, Mao S, Li S, et al. Comparing the diagnostic value of targeted with metagenomic next-generation sequencing in immunocompromised patients with lower respiratory tract infection[J]. Ann Clin Microbiol Antimicrob,2024,23(1):88.
[10]
Hong HL, Flurin L, Thoendel MJ, et al. Targeted versus shotgun metagenomic sequencing-based detection of microorganisms in sonicate fluid for periprosthetic joint infection diagnosis[J]. Clin Infect Dis,2023,76(3):e1456-e1462.
[11]
Sun W, Zheng L, Kang L, et al. Comparative analysis of metagenomic and targeted next-generation sequencing for pathogens diagnosis in bronchoalveolar lavage fluid specimens[J]. Front Cell Infect Microbiol,2024,14:1451440.
[12]
Chen W, Liu G, Cui L, et al. Evaluation of metagenomic and pathogen-targeted next-generation sequencing for diagnosis of meningitis and encephalitis in adults: A multicenter prospective observational cohort study in China[J]. J Infect,2024,88(5):106143.
[13]
李倩,邓莉平,陈果, 等. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J/CD]. 中华实验和临床感染病杂志(电子版),2023,17(1):24-31.
[14]
Chen Q, Yi J, Liu Y, et al. Clinical diagnostic value of targeted next-generation sequencing for infectious diseases (Review)[J]. Mol Med Rep,2024,30(3):153.
[15]
赵建玉,周倩倩,鲁辛辛, 等. 高通量测序技术在确认病原微生物中存在的问题与挑战[J]. 临床检验杂志,2021,39(1):6-11.
[16]
刁振丽,李金明. 宏基因组高通量测序技术的临床应用:现状,挑战与前景[J]. 协和医学杂志,2023,14(5):905-910.
[17]
何军. 宏基因组测序技术检测感染性病原体江苏专家共识(2020版)[J]. 临床检验杂志,2020,38(9):641-645.
[18]
中华医学会检验医学分会临床微生物学组,中华医学会微生物学与免疫学分会临床微生物学组,中国医疗保健国际交流促进会临床微生物与感染分会. 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识[J]. 中华检验医学杂志,2021,44(2):107-120.
[19]
中华医学会检验医学分会. 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J]. 中华检验医学杂志,2020,43(12):1181-1195.
[20]
中国医疗保健国际交流促进会临床微生物学分会. 靶向高通量测序在感染性疾病中应用与实践专家共识[J]. 中华医学杂志,2024,104(48):4375-4383.
[21]
Han D, Diao Z, Lai H, et al. Multilaboratory assessment of metagenomic next-generation sequencing for unbiased microbe detection[J]. J Adv Res,2021,38:213-222.
[22]
中国药师协会,中华医学会细菌感染与耐药防治分会,国家卫生健康委临床抗微生物药物敏感性折点研究和标准制定专家委员会. 病原宏基因组高通量测序临床本地化检测规范专家共识[J]. 中华预防医学杂志,2024,58(4):454-465.
[23]
Sinclair J, West NP, Cox AJ. Comparison of four DNA extraction methods for 16s rRNA microbiota profiling of human faecal samples[J]. BMC Res Notes,2023,16(1):169.
[24]
应超,蔡燕宁,郝淑文, 等. 三种游离核酸提取试剂盒对血浆cfDNA提取性能的比较[J]. 实用医学杂志,2023,39(12):1556-1563.
[25]
Sidstedt M, Hedman J, Romsos EL, et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR[J]. Anal Bioanal Chem,2018,410(10):2569-2583.
[26]
Benčič A, Toplak N, Koren S, et al. Metrological evaluation of DNA extraction method effects on the bacterial microbiome and resistome in sputum[J]. mSystems,2024,9(9):e0073524.
[27]
Corcoll N, Österlund T, Sinclair L, et al. Comparison of four DNA extraction methods for comprehensive assessment of 16S rRNA bacterial diversity in marine biofilms using high-throughput sequencing[J]. FEMS Microbiol Lett,2017,364(14):10. 1093/femsle/fnx139.
[28]
Cremonesi P, Severgnini M, Romanò A, et al. Bovine milk microbiota: comparison among three different DNA extraction protocols to identify a better approach for bacterial analysis[J]. Microbiol Spectr,2021,9(2):e0037421.
[29]
Zhang L, Chen T, Wang Y, et al. Comparison analysis of different DNA extraction methods on suitability for long-read metagenomic nanopore sequencing[J]. Front Cell Infect Microbiol,2022,12:919903.
[30]
中华预防医学会. 基于高通量测序的病原体筛查通用准则(T/CMPA 010-2020)[J]. 中国病原生物学杂志,2021,16(6):738-740.
[1] 刘亚楠, 李珺, 华文浩, 宋淑静, 马小亮, 董建平, 宋蕊. 两种病毒核酸提取方法在流行感冒诊断中的比较[J/OL]. 中华实验和临床感染病杂志(电子版), 2017, 11(05): 474-478.
[2] 康嘉乐, 李嘉华, 李志方, 陈荣彬, 何梦华, 魏洁. 不同核酸提取方案对EB病毒核酸质量及扩增影响分析[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(02): 80-85.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?