切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 205 -213. doi: 10.3877/cma.j.issn.1674-1358.2025.04.003

论著

恶性肿瘤患者住院化疗期间医院感染状况及列线图预测模型构建
张丽花, 胡耀华(), 周春献, 张晓亭, 胡韶军   
  1. 215200 苏州市,苏州大学附属苏州九院肿瘤内科
  • 收稿日期:2025-03-12 出版日期:2025-08-15
  • 通信作者: 胡耀华
  • 基金资助:
    江苏省卫生健康委科研项目(No. Z2022037)

Nosocomial infection status of inpatients with malignant tumor undergoing chemotherapy and construction of nomogram prediction model

Lihua Zhang, Yaohua Hu(), Chunxian Zhou, Xiaoting Zhang, Shaojun Hu   

  1. Department of Oncology, Suzhou Ninth Affiliated Hospital of Soochow University, Suzhou 215200, China
  • Received:2025-03-12 Published:2025-08-15
  • Corresponding author: Yaohua Hu
引用本文:

张丽花, 胡耀华, 周春献, 张晓亭, 胡韶军. 恶性肿瘤患者住院化疗期间医院感染状况及列线图预测模型构建[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(04): 205-213.

Lihua Zhang, Yaohua Hu, Chunxian Zhou, Xiaoting Zhang, Shaojun Hu. Nosocomial infection status of inpatients with malignant tumor undergoing chemotherapy and construction of nomogram prediction model[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2025, 19(04): 205-213.

目的

分析恶性肿瘤患者住院化疗期间医院感染状况及危险因素,并构建预测感染发生风险的列线图模型。

方法

选取2024年1月至2024年10月在苏州大学附属苏州九院住院化疗的402例恶性肿瘤患者,患者入院时均无感染迹象。根据患者住院化疗期间是否发生医院感染分为感染组(47例)和非感染组(355例)。比较两组患者的临床资料,采用多因素Logistic回归分析肿瘤患者住院化疗发生医院感染的危险因素,并构建感染发生风险的列线图模型。采用受试者工作特征(ROC)曲线分析Logistic回归模型和列线图模型的预测效能,并通过Delong检验进行比较;对优势模型进行K-fold折交叉验证法和决策曲线评价模型稳定性和临床价值。

结果

402例肿瘤患者住院化疗的医院感染率为11.69%(47/402),其中感染部位以呼吸系统为主(27例、57.45%);47份感染者标本共分离培养出革兰阴性菌30株(51.72%)、革兰阳性菌24株(41.38%)和真菌4株(6.90%)。感染组和非感染组患者年龄[(63.96 ± 6.85)岁vs.(60.22 ± 5.94)岁:t=3.982、P < 0.001]、合并糖尿病[17(36.17%)vs. 69(19.44%):χ2=6.911、P=0.009]、化疗前中性粒细胞计数[(2.39 ± 0.47)vs.(2.59 ± 0.54)× 109/L]:t=2.038、P=0.042)、中性粒细胞/淋巴细胞计数比值(NLR)[(1.07 ± 0.26)vs.(0.79 ± 0.24):t=7.442、P < 0.001]、化疗前有营养风险[15(31.91%)vs. 62(17.46%):χ2=5.597、P=0.018)]和有侵入性操作[39(82.98%)vs. 225(63.38%):χ2=7.072、P=0.008]差异均有统计学意义。多因素Logistic回归分析显示,年龄(OR=2.775、95%CI:1.415~5.447、P=0.003)、合并糖尿病(OR=2.106、95%CI:1.157~3.834、P=0.015)、化疗前NLR(OR=3.557、95%CI:1.763~7.178、P < 0.001)、化疗前有营养风险(OR=1.679、95%CI:1.059~2.662、P=0.028)以及侵入性操作(OR=2.391、95%CI:1.224~4.673、P=0.011)均为肿瘤患者住院化疗期间发生医院感染的影响因素。ROC曲线分析和Delong检验表明,列线图预测肿瘤化疗患者医院感染风险的曲线下面积(AUC)显著高于Logistic回归模型(0.884 vs. 0.798:Z=4.137、P=0.018)。对列线图模型进行100次10折交叉验证表明该模型的稳定性良好,决策曲线显示模型净获益曲线均位于全部采取措施和均不采取措施的两条极端曲线上方,表明模型在该范围内具有临床有实用价值。

结论

肿瘤患者住院化疗的医院感染风险高,本研究基于年龄、是否合并糖尿病、化疗前NLR、化疗前有无营养风险以及是否侵入性操作构建的列线图模型对肿瘤患者住院化疗的医院感染风险具有良好预测能力,可作为识别肿瘤化疗患者医院感染风险的评估工具。

Objective

To analyze the status and risk factors of nosocomial infection in patients with malignant tumors during chemotherapy, and to construct a nomogram model for predicting the risk of infection.

Methods

Total of 402 patients with malignant tumors who were hospitalized for chemotherapy in Suzhou Ninth Hospital Affiliated to Soochow University from January 2024 to October 2024 were selected. The patients showed no signs of infection upon admission. The patients were divided into infection group (47 cases) and non-infection group (355 cases) according to whether nosocomial infection occurred during hospitalization. The clinical data of the two groups were compared. The risk factors of nosocomial infection in cancer patients undergoing chemotherapy were analyzed by multivariate Logistic regression analysis, and nomogram model was constructed to predict the risk of infection. The predictive efficacy of Logistic regression model and nomogram model were analyzed by receiver operating characteristic (ROC) curve. The two models were compared by Delong test. The stability and clinical value of the dominant model were evaluated by K-fold cross-validation and decision curve.

Results

The hospital infection rate for the first hospitalization chemotherapy of 402 patients with malignant tumors was 11.69% (47/402), the main infection site was respiratory system (27 cases, 57.45%). Among the 47 infected specimens, 30 strains (51.72%) of Gram-negative bacteria, 24 strains (41.38%) of Gram-positive bacteria, and 4 strains (6.90%) of fungi were isolated and cultured. The ages of patients in the infection group and the non-infection group [(63.96 ± 6.85) years old vs. (60.22 ± 5.94) years old: t=3.982, P < 0.001], complicated with diabetes [17 (36.17%) vs. 69 (19.44%): χ2=6.911, P=0.009], neutrophil count before chemotherapy [(2.39 ± 0.47) vs. (2.59 ± 0.54) × 109/L]: t=2.038, P=0.042), neutrophil count to lymphocyte count ratio (NLR) before chemotherapy [(1.07 ± 0.26) vs. (0.79 ± 0.24): t=7.442, P < 0.001], nutritional risks before chemotherapy [15 (31.91%) vs. 62 (17.46%): χ2=5.597, P=0.018)] and invasive operations [39 (82.98%) vs. 225 (63.38%): χ2=7.072, P=0.008] were all with significant differences. Multivariate Logistic regression analysis showed that age (OR=2.775, 95%CI: 1.415-5.447, P=0.003), complicated with diabetes (OR=2.106, 95%CI: 1.157-3.834, P=0.015), NLR before chemotherapy (OR=3.557, 95%CI: 1.763-7.178, P < 0.001), nutritional risk before chemotherapy (OR=1.679, 95%CI: 1.059-2.662, P=0.028), invasive procedures (OR=2.391, 95%CI: 1.224-4.673, P=0.011) were risk factors for nosocomial infection of tumor patients undergoing chemotherapy in hospital. ROC curve analysis and Delong test showed that the area under the curve (AUC) of nomogram in predicting the risk of nosocomial infection in patients with tumor chemotherapy was significantly higher than that of Logistic regression model (0.884 vs. 0.798: Z=4.137, P=0.018). The 10-fold cross-validation of the nomogram model for 100 times showed that the model had good stability. The decision curve showed that the net benefit curve of the model is located above the two extreme curves of all measures and no measure, indicating that the model had clinical practical value in this range.

Conclusions

The risk of nosocomial infection in cancer patients undergoing chemotherapy is high. This study based on factors such as age, whether diabetes was present, NLR before chemotherapy, whether there was nutritional risk before chemotherapy and whether invasive procedures were performed, constructed a nomogram model which has a good predictive ability for the risk of hospital-acquired infections in cancer patients undergoing inpatient chemotherapy, can be used as risk assessment tool for medical staff to identify patients with nosocomial infection.

表1 402例恶性肿瘤患者住院化疗期间医院感染病原菌分布
表2 感染组与非感染组恶性肿瘤患者的临床资料
临床资料 感染组(47例) 非感染组(355例) 统计量 P
年龄(±s,岁) 63.96 ± 6.85 60.22 ± 5.94 t=3.982 < 0.001
BMI(±s,kg/m2 22.74 ± 1.67 23.16 ± 1.83 t=1.493 0.136
性别[例(%)]     χ2=0.084a 0.772
27(57.45) 196(55.21)    
20(42.55) 159(44.79)    
吸烟史[例(%)]     χ2=1.390a 0.238
19(40.43) 113(31.83)    
28(59.57) 242(68.17)    
饮酒史[例(%)]     χ2=0.846a 0.358
16(34.04) 98(27.61)    
31(65.96) 257(72.39)    
合并高血压[例(%)]     χ2=0.137a 0.711
12(25.53) 82(23.10)    
35(74.47) 273(76.90)    
合并糖尿病[例(%)]     χ2=6.911a 0.009
17(36.17) 69(19.44)    
30(63.83) 286(80.56)    
原发肿瘤类型[例(%)]     χ2=3.786a 0.581
肺癌 11(23.40) 93(26.19)    
胃癌 10(21.28) 75(21.13)    
肠癌 7(14.89) 81(22.82)    
食管癌 5(10.64) 34(9.58)    
乳腺癌 9(19.15) 53(14.93)    
其他 5(10.64) 19(5.35)    
肿瘤分期[例(%)]     χ2=2.787a 0.095
Ⅲ期及以下 14(29.79) 151(42.54)    
Ⅳ期 33(70.21) 204(57.46)    
肿瘤手术史[例(%)]     χ2=0.169a 0.681
11(23.40) 93(26.20)    
36(76.60) 262(73.80)    
肿瘤放疗史[例(%)]     χ2=2.447a 0.118
18(38.30) 97(27.32)    
29(61.70) 258(72.68)    
化疗次数(±s,次) 3.42 ± 0.81 3.15 ± 0.73 t=1.829 0.068
化疗前血液指标(±s        
白细胞计数(× 109/L) 6.42 ± 1.13 6.67 ± 1.25 t=1.302 0.194
中性粒细胞(× 109/L) 2.39 ± 0.47 2.59 ± 0.54 t=2.038 0.042
血小板计数(× 109/L) 262.35 ± 23.51 258.84 ± 22.93 t=0.981 0.326
血红蛋白(g/L) 134.59 ± 10.74 133.95 ± 10.18 t=0.403 0.687
白蛋白(g/L) 38.76 ± 4.35 39.12 ± 4.53 t=0.514 0.607
C-反应蛋白(mg/L) 3.43 ± 0.68 3.31 ± 0.57 t=1.324 0.186
NLR 1.07 ± 0.26 0.79 ± 0.24 t=7.442 < 0.001
化疗前Barthel评分(±s,分) 78.73 ± 10.54 81.59 ± 11.05 t=1.676 0.094
化疗前营养风险[例(%)]     χ2=5.597a 0.018
15(31.91) 62(17.46)    
32(68.09) 293(82.54)    
侵入性操作[例(%)]     χ2=7.072a 0.008
39(82.98) 225(63.38)    
8(17.02) 130(36.62)    
最近1次化疗住院时间(±s,d) 3.22 ± 1.01 3.03 ± 0.78 t=1.512 0.131
表3 恶性肿瘤患者住院化疗期间医院感染的相关变量赋值
表4 恶性肿瘤患者住院化疗期间医院感染影响因素的多因素Logistic回归分析
图1 预测恶性肿瘤患者住院化疗医院感染的列线图
图2 恶性肿瘤患者住院化疗期间医院感染预测模型的ROC曲线注:A:Logistic回归模型,B:列线图模型
表5 预测恶性肿瘤患者住院化疗医院感染的列线图模型交叉验证深度评估结果
图3 预测恶性肿瘤患者住院化疗医院感染的列线图模型深度验证的指标提取注:交叉验证中出现的Sz表示量化模型校准偏差大小和方向的检验统计量,绝对值越大,则偏差越大;Sp则是评估校准偏差统计显著性的P值,P值小(< 0.05)表示偏差显著,模型校准不佳;P值大(> 0.05)表示没有足够证据认为偏差显著(模型校准可接受)
图4 预测恶性肿瘤患者住院化疗医院感染的列线图预测模型的决策曲线
[1]
Li Q, Xia C, Li H, Y et al. Disparities in 36 cancers across 185 countries: secondary analysis of global cancer statistics[J]. Front Med, 2024,18(5):911-920.
[2]
Bray F, Laverersanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2024,74(3):229-263.
[3]
郑钧麒,刘相燕. 肺癌化疗后肺部感染病原菌的分布及血清细胞角蛋白19片段抗原,高迁移率族蛋白B1及可溶性血红蛋白清道夫受体的诊断价值[J]. 实用临床医药杂志,2024,28(14):7-11.
[4]
Da Silva R, Casella T. Healthcare-associated infections in patients who are immunosuppressed due to chemotherapy treatment: a narrative review[J]. J Infect Dev Ctries,2022,16(12):1784-1795.
[5]
王英,张冬梅,李国忠. 血液肿瘤化疗患者医院感染病原菌分布及影响因素分析[J]. 中华医院感染学杂志,2019,29(7):1049-1052.
[6]
谢玉娘,廖林英,韩小玉. 多发性骨髓瘤化疗患者医院感染的危险因素研究[J]. 护理学杂志,2024,39(14):100-102.
[7]
Hersberger L, Bargetzi L, Bargetzi A, et al. Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: secondary analysis of a prospective randomised trial[J]. Clin Nutr,2020,39(9):2720-2729.
[8]
中华人民共和国卫生部. 医院感染诊断标准(试行)[J]. 中华医学杂志,2001,81(5):314-320.
[9]
Jiang A, Shi X, Zheng H, et al. Establishment and validation of a nomogram to predict the in-hospital death risk of nosocomial infections in cancer patients[J]. Antimicrob Resist Infect Control,2022, 11(1):29.
[10]
董伟,皈燕,王碧娟, 等. 383例恶性肿瘤患者化疗期间医院感染的临床分析[J]. 川北医学院学报,2018,33(5):708-711.
[11]
Guo W, Gao G, Dai J, et al. Prediction of lung infection during palliative chemotherapy of lung cancer based on artificial neural network[J]. Comput Math Methods Med,2022,2022:4312117.
[12]
石兴文,尹鸿涛,刘进进, 等. 兰州市城关区中老年人群恶性肿瘤发病与死亡情况及其危险因素的队列研究[J]. 解放军医学杂志,2024,49(7):761-769.
[13]
滕熠,曹毛毛,陈万青. 中国癌症筛查的发展,现状与挑战[J]. 中国肿瘤,2022,31(7):481-487.
[14]
肖贵宝,张宏伟. 肿瘤患者化疗后医院感染的危险因素及耐药性分析[J]. 中国临床药理学杂志,2018,34(8):919-921.
[15]
许华,雷君,张云飞. 2018-2022年乌鲁木齐某三甲肿瘤专科医院病房医院感染发生及病原菌分析[J]. 华南预防医学,2023,49(6):718-723.
[16]
Robinson E, Herbert JA, Palor M, et al. Trans-epithelial migration is essential for neutrophil activation during RSV infection[J]. J Leukoc Biol,2023,113(4):354-364.
[17]
Kavazović I, Krapić M, Beumer-Chuwonpad A, et al. Hyperglycemia and not hyperinsulinemia mediates diabetes-induced memory CD8 T-cell dysfunction[J]. Diabetes,2022,71(4):706-721.
[18]
Bachlitzanaki M, Aletras G, Bachlitzanaki E, et al. Evaluation of febrile neutropenia in hospitalized patients with neoplasia undergoing chemotherapy[J]. Microorganisms,2023,11(10):2547.
[19]
黄鸿初,黄美容,温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/CD]. 中华实验和临床感染病杂志(电子版),2024,18(5):285-292.
[20]
于巧,张亚琳,林姗姗, 等. 急性白血病患者化疗期间医院感染的病原学特点及影响因素分析[J]. 中华医院感染学杂志,2019,29(1):67-70.
[21]
王锦,彭志元. NAP, NLR及CD64在肿瘤化疗合并细菌感染患者早期诊断的意义[J]. 中国微生态学杂志,2020,32(8):933-935.
[22]
王红丽,黄国胜,亚国伟, 等. 乳腺癌化疗后粒细胞减少伴发热患者感染影响因素及PCT与NLR和PLR预测感染的价值[J]. 中华医院感染学杂志,2022,32(19):2983-2986.
[23]
Sun T, Liu J, Yuan H, et al. Construction of a risk prediction model for lung infection after chemotherapy in lung cancer patients based on the machine learning algorithm[J]. Front Oncol,2024,14:1403392.
[24]
刘乐乐,李华. 中性粒细胞和淋巴细胞VCS参数与NLR对肿瘤患者化疗后细菌感染辅助诊断价值[J]. 中华肿瘤防治杂志,2019,26(3): 190-193.
[25]
游利江,葛杰,刘婷, 等. NRS 2002和PG-SGA在胃肠道恶性肿瘤患者中的应用[J]. 胃肠病学,2023,28(7):432-436.
[26]
曾红梅,王荣,王素贞. 肿瘤住院患者营养状态及对医院感染的影响研究[J]. 华南预防医学,2022,48(10):1245-1248.
[27]
吴明铭,杨海涛,林万尊, 等. 恶性肿瘤患者医院感染的特点及危险因素分析[J]. 福建医科大学学报,2020,54(1):48-52.
[28]
Jiang A, Li Y, Zhao N, et al. A novel risk classifier to predict the in-hospital death risk of nosocomial infections in elderly cancer patients[J]. Front Cell Infect Microbiol,2023,13:1179958.
[1] 杨宏宇, 李克婷, 孙传青, 任敏. 超声特征联合卵巢恶性肿瘤风险算法预测上皮性卵巢癌亚型的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 321-327.
[2] 王锐, 马得原, 韩晶, 金转梅, 张凤竹, 王玉凤, 关泉林. HER-2低表达的年轻乳腺癌患者新辅助化疗疗效影响因素及其预测模型构建[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 211-217.
[3] 刘奕莹, 李魁, 郑子芳, 郑长悦, 林力生, 陈海英, 黄龙伟, 蔡志银, 林慕昀, 苏思盈, 李航. 乳房切除术后乳头乳晕复合体缺血坏死相关因素分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 218-225.
[4] 岳青芳, 辛洁, 师帅, 王冲, 闫靓, 梁雍, 冯涛, 陈遵, 段降龙. 肠鸣音相关指标对结直肠癌手术患者围手术期严重并发症的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 244-250.
[5] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[6] 张聪, 李成. 胰头区恶性肿瘤外科手术预后现状及相关因素的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 574-578.
[7] 李菊, 王留芳, 叶春伟, 刘玉芹, 和志梅. 预康复在泌尿系统恶性肿瘤患者中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 514-520.
[8] 同娟, 乔燕, 田丹, 高萌, 毛书祥, 杨洋. 慢性阻塞性肺疾病伴心力衰竭患者继发肺部感染的危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 516-520.
[9] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[10] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[11] 匡嘉文, 陈铁军, 龚远锋, 唐辉, 唐云强. TACE-HAIC联合仑伐替尼和PD-1抑制剂四联治疗Ⅲa期肝癌的疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 554-560.
[12] 吴添庆, 郑梽楷, 贺珉睿, 潘扬勋, 王骏成, 陈锦滨, 周仲国. 华蟾素治疗肝癌肝动脉灌注化疗术后疼痛的疗效和安全性[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 569-575.
[13] 王继才, 张广权, 吴芬芳, 史宪杰. 孟德尔随机化分析克罗恩病与非酒精性脂肪性肝病之间因果关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 601-608.
[14] 杨黎渝, 刘新阳, 雷永琪, 铁学宏, 刘雨, 梁英健. 腹腔镜手术皮下气肿危险因素与防治[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 636-639.
[15] 王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅. 糖尿病肾脏疾病早期发生风险预测模型的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 218-225.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?