切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 315 -323. doi: 10.3877/cma.j.issn.1674-1358.2023.05.005

论著

儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义
李维, 莫俊俏()   
  1. 570100 海口市,海南省第五人民医院药学部
  • 收稿日期:2023-04-18 出版日期:2023-10-15
  • 通信作者: 莫俊俏
  • 基金资助:
    2018年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(No. 20210349)

Genotype identification and drug resistance analysis of respiratory tract drug-resistant Haemophilus influenzae in children for the choice of antibiotic treatment

Wei Li, Junqiao Mo()   

  1. Department of Pharmacy, The Fifth People’s Hospital of Hainan Province, Haikou 570100, China
  • Received:2023-04-18 Published:2023-10-15
  • Corresponding author: Junqiao Mo
引用本文:

李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.

Wei Li, Junqiao Mo. Genotype identification and drug resistance analysis of respiratory tract drug-resistant Haemophilus influenzae in children for the choice of antibiotic treatment[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(05): 315-323.

目的

探讨儿童呼吸道耐药流感嗜血杆菌(HI)基因型鉴定及耐药分析对抗菌药物治疗选择的意义。

方法

选择2018年3月至2022年3月海南省第五人民医院收治的92例呼吸道HI感染患儿为研究对象。收集菌株的血清学分型、生物学分型、基因分型(TEM-1和ROB-1)、抗菌药物敏感性、β-内酰胺酶表达;应用多因素Logistic回归分析儿童呼吸道HI β-内酰胺酶阳性的影响因素;构建儿童呼吸道HI β-内酰胺酶阳性的列线图模型;分别通过受试者工作特征(ROC)曲线、校准曲线和临床决策曲线进行模型区分度、准确性和有效性评价。

结果

所分离的92株HI生物学分型可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ和Ⅷ型8个生物型,其中Ⅱ型[35.87%(33/92)]和Ⅲ型[28.26%(26/92)]占比最多;血清学分型中HIa占比最多[28.26%(26/92)];TEM-1基因检出率为57.61%(53/92),ROB-1基因检出率为21.74%(20/92)。将8个生物型HI进行药敏试验分析显示,Ⅴ、Ⅵ、Ⅶ和Ⅷ型HI均未检出抗菌药物耐药,Ⅳ型HI对氨苄西林的耐药率较高[57.14%(4/7)];Ⅱ型HI对头孢呋辛耐药率较高[39.39%(13/33)]。92株HI中β-内酰胺酶阳性株和阴性株分别为37株(40.22%)和55株(59.78%);β-内酰胺酶阳性株对头孢吡肟和氨苄西林的耐药率[33(89.19%)和37(100.00%)]显著高于β-内酰胺酶阴性株[4(6.35%)和7(11.11%))],差异有统计学意义(χ2 = 68.628、74.747,P均< 0.001)。多因素Logistic回归分析显示,连续使用抗菌药物≥ 5 d(OR = 163.464、95%CI:8.420~3 173.439、P < 0.001)、连续用药≥ 2次(OR = 19.890、95%CI:2.300~171.977、P = 0.007)、联合用药≥ 2种(OR = 32.468、95%CI:2.792~377.616、P = 0.005)和频繁更换用药≥ 2次(OR = 30.769、95%CI:3.358~281.921、P = 0.002)均为影响儿童呼吸道HI β-内酰胺酶阳性的独立危险因素。基于危险因素构建列线图模型预测儿童呼吸道HI β-内酰胺酶阳性的区分度较高,准确性和有效性较好。

结论

临床上应加强呼吸道HI的分离鉴定、耐药性监测;正确分析HI的耐药机制,合理使用、避免滥用抗菌药物。

Objective

To investigate the significance of genotype identification and drug resistance analysis of children’s respiratory drug-resistant Haemophilus influenzae (HI) for antibiotic treatment.

Methods

Total of 92 children with respiratory HI infection admitted to the Fifth People’s Hospital of Hainan Province from March 2018 to March 2022 were selected. Serotype, biotype, genotyping (TEM-1 and ROB-1), antibiotic sensitivity and β-lactamase expression were collected. The influence factors of positive HI β-lactamase in children’s respiratory tract were analyzed by Logistic regression analysis; A line map model of children’s respiratory tract with HI β-lactamase positive was constructed. The model was evaluated by receiver operating characteristic (ROC) curve, calibration curve and clinical decision curve, respectively.

Results

The 92 strains of HI were classified into 8 biotypes, which were Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ, Ⅶ and Ⅷ. Among these, types Ⅱ [35.87% (33/92)] and Ⅲ [28.26% (26/92)] were the most prevalent. The serological typing revealed that HIa accounted for the highest proportion [28.26% (26/92)]. The detection rates of TEM-1 and ROB-1 genes were 57.61% (53/92) and 21.74% (20/92), respectively. Sensitivity testing on the 8 biotypes of HI showed that types Ⅴ, Ⅵ, Ⅶ and Ⅷ exhibited no antibiotic resistance. Type Ⅳ HI demonstrated a relatively high resistance rate to ampicillin [57.14% (4/7)], while type Ⅱ HI exhibited a higher resistance rate to cefuroxime [39.39% (13/33)]. Among the 92 strains, 37 (40.22%) were β-lactamase positive and 55 (59.78%) were negative. β-lactamase positive strains showed significantly higher resistance rates to cefpodoxime and ampicillin [33 (89.19%) and 37 (100.00%), respectively] compared to β-lactamase negative strains [4 (6.35%) and 7 (11.11%), respectively], with statistically significant differences (χ2 = 68.628, 74.747, both P < 0.001). Multifactor Logistics regression analysis revealed that using antibiotics continuously for ≥ 5 days (OR = 163.464, 95%CI: 8.420-3 173.439, P < 0.001), having ≥ 2 courses of continuous medication (OR = 19.890, 95%CI: 2.300-171.977, P = 0.007), combining ≥ 2 types of drugs (OR = 32.468, 95%CI: 2.792-377.616, P = 0.005) and frequently changing medication ≥ 2 times (OR = 30.769, 95%CI: 3.358-281.921, P = 0.002) were independent risk factors for β-lactamase-positive HI in children’s respiratory tracts. Constructing a column chart model based on these risk factors exhibited high discrimination, accuracy and effectiveness in predicting β-lactamase-positive HI in children’s respiratory tracts without altering the structure.

Conclusions

Clinically, the separation and identification of respiratory HI and the monitoring of drug resistance should be strengthened; the resistance mechanism of HI should be analyzed correctly, the antimicrobial drugs should be rationally used.

表1 入组患儿呼吸道92株HI及β-内酰胺酶基因分型[株(%)]
表2 不同型别HI对抗菌药物的敏感性[株(%)]
表3 β-内酰胺酶阳性和阴性菌株的耐药分析[株(%)]
表4 β-内酰胺酶阳性和β-内酰胺酶阴性患儿抗菌药物应用[株(%)]
表5 影响HI β-内酰胺酶阳性的单因素Logistic回归分析
表6 影响HI β-内酰胺酶阳性的多因素Logistic回归分析
图1 儿童呼吸道HI β-内酰胺酶阳性的列线图预测模型
图2 列线图模型的区分度评价
图3 列线图模型的校准度评价
图4 列线图预测模型的有效性评价
[1]
Yamaguchi K, Kadota M, Nishimura O, et al. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies[J]. Mol Ecol,2021,30(23):5923-5934.
[2]
Russo DO, Torres BR, Romanelli RMC, et al. Haemophilus influenzae serotype a as a cause of meningitis in children in Brazil[J]. Pediatr Infect Dis J,2022,41(2):108-111.
[3]
王军, 孙芳, 蔡慧君, 等. 2019至2020年西安儿童医院儿童细菌感染分布和耐药监测分析[J/CD]. 中华实验和临床感染病杂志(电子版),2022,16(2):90-99.
[4]
Duan H, Jones AW, Hewitt T, et al. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data[J]. Genome Biol,2022,23(1):84-88.
[5]
Cumming AJ, Khananisho D, Harris R, et al. Antibiotic-efficient genetic cassette for the TEM-1 β-lactamase that improves plasmid performance[J]. ACS Synth Biol,2022,11(1):241-253.
[6]
Rai E, Alaraimi R, Al Aamri I. Pediatric lower respiratory tract infection: Considerations for the anesthesiologist[J]. Paediatr Anaesth,2022,32(2):181-190.
[7]
Ogal M, Johnston SL, Klein P, et al. Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: a randomized, blinded, controlled clinical trial[J]. Eur J Med Res,2021,26(1):33-39.
[8]
Smith DK, Kuckel DP, Recidoro AM. Community-acquired pneumonia in children: rapid evidence review[J]. Am Fam Physician, 2021,104(6):618-625.
[9]
Tramper-Stranders GA. Childhood community-acquired pneumonia: A review of etiology- and antimicrobial treatment studies[J]. Paediatr Respir Rev,2018,26(1):41-48.
[10]
Berinstein JA, Steiner CA, Roth KJ, et al. Association of household pets, common dietary factors, and lifestyle factors with Clostridium difficile infection[J]. Dig Dis Sci,2021,66(1):206-212.
[11]
Jouneau S, Ménard C, Lederlin M. Pulmonary alveolar proteinosis[J]. Respirology,2020,25(8):816-826.
[12]
Yamada S, Seyama S, Wajima T, et al. β-Lactamase-non-producing ampicillin-resistant Haemophilus influenzae is acquiring multidrug resistance[J]. J Infect Public Health,2020,13(4):497-501.
[13]
van de Beek D, Brouwer MC, Koedel U, et al. Community-acquired bacterial meningitis[J]. Lancet,2021,398(10306):1171-1183.
[14]
Romandini M, Lima C, Pedrinaci I, et al. Prevalence and risk/protective indicators of peri-implant diseases: A university-representative cross-sectional study[J]. Clin Oral Implants Res,2021,32(1):112-122.
[15]
Probst V, Shahoud F, Osborne AF, et al. Report of Haemophilus Influenzae serotype a intracranial infections in older children[J]. Pediatr Investig,2023,7(2):132-136.
[16]
Hofer U. Novel metallo-β-lactamase inhibitors[J]. Nat Rev Microbiol,2022,20(3):125-130.
[17]
Ajala O, Odetoyin B, Owojuyigbe T, et al. Detection of tem-1 and class-1 integrons in multidrug resistant uropathogens from HIV patients with asymptomatic bacteriuria in a Tertiary Care Hospital, South West Nigeria[J]. Afr Health Sci,2022,22(1):475-485.
[18]
Jiménez JM, Morales R, Molina A, et al. Effect of the rob(1;29) translocation on the fertility of beef cattle reared under extensive conditions: A 30-year retrospective study[J]. Reprod Domest Anim,2022,57(4):349-356.
[19]
李管明, 张霭润, 王启闯, 等. 新生儿重症监护室多重耐药菌感染临床分析及高危因素[J/CD]. 中华实验和临床感染病杂志(电子版),2022,16(3):185-191.
[20]
Khan A, Erickson SG, Pettaway C, et al. Evaluation of susceptibility testing methods for aztreonam and ceftazidime-avibactam combination therapy on extensively drug-resistant Gram-negative organisms[J]. Antimicrob Agents Chemother,2021,65(11):e0084621.
[21]
Karlowsky JA, Wise MG, Hackel MA, et al. Ceftibuten-ledaborbactam activity against multidrug-resistant and extended-spectrum-β-lactamase-positive clinical isolates of Enterobacterales from a 2018-2020 global surveillance collection[J]. Antimicrob Agents Chemother,2022,66(11):e0093422.
[22]
Millière L, Duployez C, Loïez C, et al. Evaluation of the new BL-RED (β-lactamase rapid electrochemical detection) test in positive blood culture broths[J]. New Microbiol,2021,44(3):161-163.
[23]
Bianco G, Boattini M, Iannaccone M, et al. Direct ethylenediaminetetra-acetic acid-modified β-lactam inactivation method: an improved method to identify serine-carbapenemase-, metallo-β-lactamase-, and extended-spectrum-β-lactamase-producing enterobacterales directly from positive blood culture[J]. Microb Drug Resist,2021,27(6):740-746.
[24]
Ruedas-López A, Alonso-García I, Lasarte-Monterrubio C, et al. Selection of AmpC β-lactamase variants and metallo-β-lactamases leading to ceftolozane/tazobactam and ceftazidime/avibactam resistance during treatment of MDR/XDR Pseudomonas aeruginosa infections[J]. Antimicrob Agents Chemother,2022,66(2):e0206721.
[25]
Shaeer KM, Zmarlicka MT, Chahine EB, et al. Plazomicin: A next-generation aminoglycoside[J]. Pharmacotherapy,2019,39(1):77-93.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[5] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 吴少峰, 张轶男, 孙杰. 机器人辅助手术在儿童微创泌尿手术中的应用和展望[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 440-444.
[8] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[9] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[10] 李芳, 许瑞, 李洋洋, 石秀全. 循证医学理念在儿童腹股沟疝患者中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 782-786.
[11] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[12] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[13] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[14] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
[15] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
阅读次数
全文


摘要