切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 252 -259. doi: 10.3877/cma.j.issn.1674-1358.2023.04.006

论著

细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究
张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春()   
  1. 210009 南京市,南京中医药大学附属中西医结合医院检验科;210009 南京市,江苏省中医药研究院
    210008 南京市,南京医科大学附属儿童医院检验科
  • 收稿日期:2023-01-16 出版日期:2023-08-15
  • 通信作者: 孙林春
  • 基金资助:
    南京市卫生科技发展专项资金项目(No. YKK20125); 南京医科大学科技发展基金项目(No. NMUB20210074)

Surface-anchored protein SasX involves in the biofilm formation and pathogenicity of Staphylococcus aureus ST239 clone by regulating RNAⅢ

Li Zhang, Yang Zhang, Jingjing Ma, Zhehao Yu, Liang Ge, Linchun Sun()   

  1. Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210009, China
    Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
  • Received:2023-01-16 Published:2023-08-15
  • Corresponding author: Linchun Sun
引用本文:

张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.

Li Zhang, Yang Zhang, Jingjing Ma, Zhehao Yu, Liang Ge, Linchun Sun. Surface-anchored protein SasX involves in the biofilm formation and pathogenicity of Staphylococcus aureus ST239 clone by regulating RNAⅢ[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(04): 252-259.

目的

探讨金黄色葡萄球菌(SA)细胞壁锚定蛋白SasX对RNAⅢ转录表达的调控,揭示其对SA的生物膜(BF)形成和致病过程的作用。

方法

收集2022年4~6月南京医科大学附属儿童医院住院患儿临床样本中分离的SA ST239克隆,采用基因敲除和回补技术建立突变株△SasX和回补株△SasX(pRB473-SasX),经RNAⅢ抑制肽(RIP)处理,再采用实时荧光定量PCR(qRT-PCR)检测SasX基因对RNAⅢ转录水平的影响,绘制增殖曲线观察菌株生长速度,镜下观察菌株聚集能力,半定量实验观察BF形成,并采用qPCR验证BF形成相关基因表达。

结果

△SasX株的RNA Ⅲ水平显著低于野生株(t = 4.273、P = 0.037)。△SasX株BF形成能力较野生株显著减弱(t = 4.619、P = 0.032),△SasX(pRB473-SasX)+ RIP株BF形成能力显著低于△SasX(pRB473-SasX)株(t = 7.874、P = 0.011)。△SasX株icaA(t = 5.324、P = 0.027)、sarA(t = 6.250、P = 0.016)和fnbA(t = 4.833、P = 0.031)mRNA水平显著低于野生株;△SasX(pRB473-SasX)+ RIP株icaA(t = 4.386、P = 0.034)和sarA(t = 5.531、P = 0.023)mRNA水平较△SasX(pRB473-SasX)株显著降低。镜下可见野生株有大片聚集成团,△SasX株多为单个散在分布或小范围聚集,△SasX株的聚集能力较野生株显著减弱;△SasX(pRB473-SasX)株的聚集能力和野生株相当,△SasX(pRB473-SasX)+ RIP株的聚集能力较△SasX(pRB473-SasX)株减弱。

结论

SA SasX通过调控RNAⅢ的转录表达,促进细菌的聚集和BF形成能力,从而参与其致病过程。

Objective

To investigate the regulation of RNAⅢ transcription by Staphylococcus aureus (SA) surface-anchored protein SasX and its effect on bacterial aggregation and biofilm (BF) formation, which will reveal the effect of SasX on the pathogenicity of SA ST239 clones via RNAⅢ.

Methods

SA ST239 HS770 isolated from clinical specimens of hospitalized children of Children’s Hospital of Nanjing Medical University from April to June in 2022 was used to establish mutant strains △SasX and complementary strains △SasX (pRB473-SasX) by gene knockout and complementation technology, and further treated with RNAⅢ inhibitory peptide (RIP). The effect of SasX gene on RNAⅢ transcription level was detected by quantitative real-timePCR (qRT-PCR), and the growth rate of the strains was observed by proliferation curve. The aggregation ability was analyzed by microscopic examination and the BF formation was observed by semi-quantitative BF formation experiments.

Results

The RNAⅢ of △SasX was significantly lower than that of wild strain (t = 4.273, P = 0.037). The BF formation ability of the △SasX was significantly weaker than that of the wild strain (t = 4.619, P = 0.032). The BF-forming ability of the △SasX (pRB473-SasX) + RIP strain was significantly lower than that of the △SasX (pRB473-SasX) (t = 7.874, P = 0.011). The mRNA levels of icaA (t = 5.324, P = 0.027), sarA (t = 6.250, P = 0.016) and fnbA (t = 4.833, P = 0.031) in the △SasX were significantly lower than those in the wild strain. The levels of icaA (t = 4.386, P = 0.034) and sarA (t = 5.531, P = 0.023) mRNA in the △SasX (pRB473-SasX) + RIP strain were significantly lower than those in the △SasX (pRB473-SasX). Under the microscope, it can be seen that the wild strains had large aggregates and clusters, and the △SasX were mostly scattered alone or aggregated in a small area. The aggregation ability of the △SasX was obviously weaker than that of the wild strain, the aggregation ability of the △SasX (pRB473-SasX) + RIP strain was weaker than that of the △SasX (pRB473-SasX).

Conclusions

SA SasX promotes the aggregation and enhances the ability of BF formation of SA by regulating the transcriptional expression of RNAⅢ, and thus participates in its pathogenic processes.

表1 △SasX株和回补表达菌株构建相关的基因PCR引物序列
表2 生物膜形成相关基因的qRT-PCR引物序列
图1 PCR筛选突变株△SasX和回补株△SasX(pRB473-SasX)注:A:PCR筛选突变株△SasX,M为marker,1号泳道:以金黄色葡萄球菌HS770基因组DNA为模板的扩增结果;2~4号泳道:以不能在含氯霉素平板生长、只能在无抗菌药物平板生长的单一克隆DNA为模板的扩增结果,初步鉴定2号和3号泳道为SasX基因敲除成功的克隆。B:PCR筛选回补株△SasX(pRB473- SasX),M为marker,1~3号泳道为以在抗性平板上长出的单克隆菌落增菌后的扩增结果,1号泳道无PCR产物,2号和3号泳道产物大小符合SasX片段大小,初步鉴定为回补株
图2 SasX对RNAⅢ表达的影响注:*与野生株相比:P < 0.05,&与突变株相比:P < 0.05(n = 3)
图3 SA的BF形成注:*:与野生株相比:P < 0.05,&:与△SasX(pRB473- SasX)株相比:P < 0.01
图4 金黄色葡萄球菌BF形成相关基因表达注:*:与野生株相比:P<0.05,&:与△SasX(pRB473- SasX)株相比:P < 0.05
图5 SA的生长曲线
图6 SA的聚集能力注:革兰染色,100 ×
[1]
Jayakumar J, Kumar VA, Biswas L, et al. Therapeutic applications of lysostaphin against Staphylococcus aureus[J]. J Appl Microbiol, 2021,131(3):1072-1082.
[2]
李涛,刘晓芹. 利奈唑胺与万古霉素治疗儿童肺部金黄色葡萄球菌感染临床疗效及安全性的比较[J]. 临床合理用药杂志,2022,15(27):165-167.
[3]
巴爽,只倩,梁帆, 等. 儿童金黄色葡萄球菌感染致急性骨髓炎合并脓毒性肺栓塞伴深静脉血栓形成一例临床分析[J]. 中国小儿急救医学,2021,28(9):823-827.
[4]
黄春华,赵新闻,王梦娟. T大颗粒淋巴细胞白血病合并金黄色葡萄球菌感染致脓毒性休克[J]. 实用休克杂志(中英文),2020,4(1):54-56.
[5]
Lin J, Wu CA, Yan C, et al. A prospective cohort study of staphylococcus aureus and methicillin-resistant staphylococcus aureus carriage in neonates: the role of maternal carriage and phenotypic and molecular characteristics[J]. Infect Drug Resist,2018,24(11):555-565.
[6]
Zheng XY, Choy BNK, Zhou MM, et al. Antibiotic resistance pattern of staphylococcus aureus isolated from pediatrics with ocular infections: a 6-year hospital-based study in China[J]. Front Pediatr,2021,19(9):728634.
[7]
耿文静,董世霄,靳绯等. 新生儿金黄色葡萄球菌临床分离株分子分型及毒力基因研究[J]. 中华微生物学和免疫学杂志,2020,40(6):429-436.
[8]
Ying H, Mahmudiono T, Alghazali T, et al. Molecular characterization, virulence determinants, and antimicrobial resistance profile of methicillin-resistant staphylococcus aureus in the north of iran; a high prevalence of st239-sccmec Ⅲ/t037 Clone[J]. Chemotherapy,2022,67(1):37-46.
[9]
Dai YX, Liu JL, Guo W, et al. Decreasing methicillin-resistant Staphylococcus aureus (MRSA) infections is attributable to the disappearance of predominant MRSA ST239 clones, Shanghai, 2008-2017[J]. Emerg Microbes Infec,2019,8(1):471-478.
[10]
Bakthavatchalam YD, Dwarakanathan HT, Munusamy E, et al. A Distinct geographic variant of sasX in methicillin-resistant Staphylococcus aureus ST239 and ST368 lineage from South India[J]. Microb Drug Resist,2019,25(3):413-420.
[11]
陈健,杜昕,宋燕, 等. 新的细胞壁锚定蛋白SasX促进金黄色葡萄球菌黏附聚集和定植能力[J]. 中华微生物学和免疫学杂志,2012,32(6):519-524.
[12]
Ismadi YKM, Chan YY. Distribution of sasX, qacA/B and mupA genes and determination of genetic relatedness of methicillin-resistant staphylococcus aureus among clinical isolates and nasal swab samples from the same patients in a hospital in Malaysia[J]. Singapore Med J,2022,63(6):335-341.
[13]
Jin Y, Li M, Shang Y, et al. Sub-inhibitory concentrations of mupirocin strongly inhibit alpha-toxin production in high-level mupirocin-resistant MRSA by down-regulating agr, saeRS, and sarA[J]. Front Microbiol,2018,9:993.
[14]
Whiteley M, Diggle SP, Greenberg EP, et al. Progress in and promise of bacterial quorum sensing research[J]. Nature,2017,551(7680):313- 320.
[15]
Minich A, Lišková V, KormanováĽ, et al. Role of RNAⅢ in resistance to antibiotics and antimicrobial agents in staphylococcus epidermidis biofilms[J]. Int J Mol Sci,2022,23(19):11094.
[16]
Bronesky D, Wu Z, Marzi S, e al. Staphylococcus aureus RNAⅢ and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression[J]. Annu Rev Microbiol,2016,8(70):299-316.
[17]
Holden MT, Lindsay JA, Corton C, et al. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW)[J]. J Bacteriol,2010,192(3):888-892.
[18]
Backer SD, Xavier BB, Vanjari L, et al. Remarkable geographical variations between india and europe in carriage of the staphylococcal surface protein-encoding sasX/sesI and in the population structure of methicillin-resistant staphylococcus aureus belonging to clonal complex 8[J]. Clin Microbiol Infec,2018,25(5):628. e1-e7.
[19]
陈瑶,刘张玲,汤荣睿. 金黄色葡萄球菌生物膜预防和治疗的研究进展[J]. 中国抗生素杂志,2021,46(1):20-26.
[20]
Salam AM, Quave CL. Targeting virulence in staphylococcus aureus by chemical inhibition of the accessory gene regulator system in vivo[J]. mSphere,2018,3(1):e00500-17.
[21]
Ciulla M, Stefano AD, Marinelli L, et al. RNAⅢ inhibiting peptide (RIP) and derivatives as potential tools for the treatment of S. aureus biofilm infections[J]. Curr Top Med Chem,2018,18(24):2068-2079.
[22]
邢铭友,刘莉娜,宋世会, 等. 表皮葡萄球菌ica操纵子与细胞间多糖粘附素及生物膜表型的相关性[J]. 华中科技大学学报:医学版,2008,37(4):449-452.
[23]
Lei MG, Cue D, Roux CM, et al. Rsp inhibits attachment and biofilm formation by repressing fnbA in staphylococcus aureus MW2[J]. J Bacteriol,2011,193(19):5231-5241.
[24]
Selvaraj A, Valliammai A, Muthuramalingam P, et al. Carvacrol targets sara and crtm of methicillin-resistant staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: an in vitro and in vivo approach[J]. ACS Omega,2020,5(48):31100-31114.
[25]
Yu J, Jiang F, Zhang F, et al. Virtual screening for novel sara inhibitors to prevent biofilm formation of staphylococcus aureus in prosthetic joint infections[J]. Front Microbiol,2020,11:587175.
[26]
覃金球,李萌,覃媛媛, 等. 临床分离金黄色萄球菌生物膜动态观察及药物敏感性研究[J]. 中华检验医学杂志,2019,42(2):140-145.
[27]
Httna B, Thn A, Mo A. The staphylococcal exopolysaccharide pia-biosynthesis and role in biofilm formation, colonization, and infection[J]. Comput Struct Biotec,2020,4(18):3324-3334.
[1] 李小兵. 伤口细菌生物膜的影响和处理[J]. 中华损伤与修复杂志(电子版), 2020, 15(05): 422-422.
[2] 胡振平, 许辉, 叶茂, 于静. 糖尿病足患者合并耐甲氧西林金黄色葡萄球菌感染的临床研究[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 380-385.
[3] 冯洒然, 李德志, 林殿杰, 朱玲. 金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 411-417.
[4] 姚丽萍, 张蕾, 林玉红, 张梦晗, 卢志山. 纳米银溶液用于慢性根尖周炎根管内封药的实验动物研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(02): 95-100.
[5] 马皓祯, 李晓岚. 器官型口腔黏膜感染模型在宿主-微生物关系研究的应用与展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 321-327.
[6] 张建, 杨梦琪, 翟京宇. 社区获得性金黄色葡萄球菌肺炎合并镰刀菌感染一例[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 652-654.
[7] 娄元华, 马化芹. 鞘内注射万古霉素治疗重型颅脑外伤开颅术后MRSA颅内感染的临床研究[J]. 中华神经创伤外科电子杂志, 2019, 05(06): 370-372.
[8] 杜霈, 秦瑾, 冯忠军, 郑翠影, 高伟, 宋珮瑶, 刘一冰. MRSA鼻腔筛查可排除MRSA手术部位感染:一项诊断实验meta分析[J]. 中华老年骨科与康复电子杂志, 2020, 06(03): 171-177.
[9] 黄匀, 明静, 龚晨晨, 钟剑敏, 刘旭, 付建宇, 毕红英, 方慧, 唐艳, 刘媛怡, 王迪芬. 重度骨髓抑制致导管源性空洞型重症金黄色葡萄球菌肺炎一例[J]. 中华重症医学电子杂志, 2021, 07(03): 282-284.
[10] 董行, 郎东浩, 符雪, 李芳, 王凌峰. 群体感应系统与生物膜耐药机制的研究现状[J]. 中华临床医师杂志(电子版), 2021, 15(01): 57-60.
[11] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144,150.
[12] 孙丹, 姬会春, 祝宇翀, 单宇, 刘军权, 廖雨琴. 三叶青提取物TH-w3对金黄色葡萄球菌生物膜的抑制和清除作用[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 227-232.
[13] 李倩珺, 黄淑洪, 雷毅怡, 冯泳琳. 黄连对生物膜状态下耐氟康唑白色念珠菌凝集素样序列基因表达影响[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 89-94.
[14] 梁慧玲, 韩超, 郑琳颖, 黄桢, 高东华. 翘芩清肺剂对肺炎克雷伯菌和金黄色葡萄球菌的抑菌效果初探[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 13-16.
[15] 杨锐富, 周燕斌. 主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 77-81.
阅读次数
全文


摘要