切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 411 -417. doi: 10.3877/cma.j.issn.1674-1358.2020.05.010

所属专题: 文献

论著

金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用
冯洒然1, 李德志2,(), 林殿杰2, 朱玲2   
  1. 1. 250014 济南市,山东第一医科大学第一附属医院血液科
    2. 250014 济南市,山东第一医科大学附属省立医院呼吸与危重症医学科
  • 收稿日期:2019-10-29 出版日期:2020-10-20
  • 通信作者: 李德志
  • 基金资助:
    山东省自然科学基金项目(No. ZR2014HQ050,No. ZR2015HL38)

Disruption of Staphylococcus aureus and staphylococcal Fn-binding protein A to the tight junction of human microvascular endothelial cells

Saran Feng1, Dezhi Li2,(), Dianjie Lin2, Ling Zhu2   

  1. 1. Department of Hematology, First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
    2. Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, China
  • Received:2019-10-29 Published:2020-10-20
  • Corresponding author: Dezhi Li
引用本文:

冯洒然, 李德志, 林殿杰, 朱玲. 金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 411-417.

Saran Feng, Dezhi Li, Dianjie Lin, Ling Zhu. Disruption of Staphylococcus aureus and staphylococcal Fn-binding protein A to the tight junction of human microvascular endothelial cells[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(05): 411-417.

目的

观察金黄色葡萄球菌和纤维连接蛋白结合蛋白A基因(fnBA)敲除金黄色葡萄球菌菌株对人微血管内皮细胞(HMEC-1)紧密连接蛋白ZO-1、Claudin-5的影响,并探讨金黄色葡萄球菌侵袭血管内皮细胞的机制。

方法

将野生金黄色葡萄球菌菌株NCTC8325与HMEC-1按100︰1比例共培养,实时定量RT-PCR检测共培养30 min、60 min和120 min时HMEC-1紧密连接成份ZO-1和Claudin-5 mRNA的表达,同时应用Western blot分析和免疫组织化学染色观察共培养不同时间紧密连接蛋白ZO-1和Claudin-5的表达。构建fnBA基因敲除突变菌株NCTC8325ΔfnbA,以野生金黄色葡萄球菌菌株NCTC8325为阳性对照,观察突变株NCTC8325ΔfnbA与HMEC-1共培养120 min后紧密连接蛋白ZO-1和Claudin-5的变化。

结果

金黄色葡萄球菌NCTC8325与HMEC-1共培养30 min、60 min和120 min后紧密连接蛋白ZO-1、Claudin-5 mRNA的表达在30 min、120 min时较对照组显著下降[30 min时与对照组比较:ZO-1:t = 4.104、P = 0.015,Claudin-5 mRNA:t = 2.802、P = 0.049;120 min时与对照组比较:ZO-1:t = 3.478、P = 0.025,Claudin-5 mRNA:t = 1.802、P = 0.261],但60 min时ZO-1、Claudin-5 mRNA的表达有一过性升高。与金黄色葡萄球菌NCTC8325共培养后,免疫组织化学结果发现在30 min时ZO-1和Claudin-5两种紧密连接蛋白较对照组表达显著下降(t = 33.6、59.03,P均< 0.001),120 min时ZO-1和Claudin-5两种紧密连接蛋白较对照组表达亦显著下降(t = 31.8、60.75,P均< 0.001);Western blot与免疫组组织化学结果一致。与突变菌株NCTC8325ΔfnbA共培养30 min、60 min和120 min后,在30 min和60 min时ZO-1、Claudin-5蛋白的表达与NCTC8325组差异无统计学意义(P均> 0.05),在120 min时ZO-1和Claudin-5蛋白的表达较NCTC8325组显著升高,差异均有统计学意义(ZO-1:t = 14.89、P < 0.001,Claudin-5:t = 7.008、P = 0.002)。

结论

金黄色葡萄球菌能通过下调紧密连接蛋白破坏HMEC-1紧密连接屏障,且其表面蛋白FnBPA发挥了重要作用。

Objective

To investigate the changes of tight junction protein ZO-1 and Claudin-5 of human microvascular endothelial cells (HMEC-1) after incubation with Staphylococcus aureus (S. aureus) and fnbA knockout strains, and to explore the mechanism of S. aureus invading the vascular endothelial cells.

Methods

Wild NCTC8325 S. aureus strain were co-cultured with HMEC-1 in 100:1 ratio for 30 min, 60 min and 120 min. Quantitative real-time-PCR analyses were performed to examine the expressions of ZO-1 and Claudin-5 mRNA. At the same time, the expressions of protein ZO-1 and Claudin-5 were also analyzed by western blot and immunohistochemistry methods. The strain NCTC8325Δ fnbA with fnbA gene knockout was generated and co-cultured with HMEC-1 for 120 min. Western blot and immunohistochemistry were used to measure the expressions of ZO-1 and Claudin-5.

Results

The mRNA expression at different times showed a pronounced transcription of ZO-1 and Claudin-5 (P = 0.0017). The transcriptional level at 60 min was higher. At 30 min, transcriptional levels of ZO-1 and Claudin-5 were higher than 0 min (ZO-1: t = 4.104, P = 0.0148; Claudin-5: t = 2.802, P = 0.0487). At 120 min, transcriptional levels of ZO-1 and Claudin-5 were higher than 0 min (ZO-1: t = 3.478, P = 0.0254; Claudin-5: t = 1.802, P = 0.2611). After incubation with S. aureus NCTC8325, the levels of tight junction proteins ZO-1 and Claudin-5 were significantly down-regulated at 30 min and 120 min examined by immunohistochemistry (30 min: ZO-1: t = 33.6, P = 0.0001; Claudin-5: t = 59.03, P = 0.0001; 120min: ZO-1: t = 31.8, P = 0.0001; Claudin-5: t = 60.75, P = 0.0001). The levels of tight junction proteins ZO-1 and Claudin-5 were consistent with the results of immunohistochemistry. After incubation with S. aureus NCTC8325Δ fnbA for 30 min, 60 min and 120 min, there were no differences in S. aureus NCTC8325 and S. aureus NCTC8325Δ fnbA group at 30 min and 60 min, but the levels of tight junction proteins ZO-1 and Claudin-5 were significantly up-regulated than the control at 120 min (ZO-1: t = 14.89, P = 0.0001; Claudin-5: t = 7.008, P = 0.0022).

Conclusions

S. aureus could breach the microvascular endothelial cells so as to favor themselves shuttling by disrupting tight junction proteins ZO-1 and Claudin-5, and FnBPA might play an important role in the process.

图1 金黄色葡萄球菌NCTC8325在不同时间对HMEC-1 ZO-1和Claudin-5 mRNA的影响(免疫组织化学染色)
图2 金黄色葡萄球菌NCTC8325在不同时间对HMEC-1紧密连接蛋白ZO-1和Claudin-5的影响(免疫组织化学染色)
图3 金黄色葡萄球菌NCTC8325在不同时间对HMEC-1紧密连接蛋白ZO-1和Claudin-5的影响(200 ×)
图4 金黄色葡萄球菌NCTC8325在不同时间对HMEC-1紧密连接蛋白ZO-1和Claudin-5的影响(Western blot分析)
图5 金黄色葡萄球菌NCTC8325和NCTC8325ΔfnbA在120 min时对HMEC-1紧密连接蛋白ZO-1和Claudin-5的影响(免疫组织化学染色)
图6 金黄色葡萄球菌NCTC8325和NCTC8325ΔfnbA在120 min时对HMEC-1紧密连接蛋白ZO-1和Claudin-5的影响(Western blot分析)
[1]
Kim T, Lee SC, Kim MJ, et al. Clinical significance of follow-up blood culture in patients with a single Staphylococcus aureus-positive blood culture[J]. Infect Dis(Lond),2020,52(3):207-212.
[2]
Bonnal C, Birgand G, Lolom I, et al. Staphylococcus aureus healthcare associated bacteraemia: An indicator of catheter related infections[J]. Med Mal Infect,2015,45(3):84-88.
[3]
Que YA, Haefliger JA, Piroth L, et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis[J]. J Exp Med,2005,201(10):1627-1635.
[4]
Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus[J]. Eur J Clin Microbiol Infect Dis,2016,35(12):1923-1931.
[5]
冯洒然,李德志,徐力, 等. 金黄色葡萄球菌fnbA和fnbB基因及fnbAB双基因缺失突变体菌株的构建[J]. 徐州医科大学学报,2018,38(8):512-518.
[6]
Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus[J]. Eur J Clin Microbiol Infect Dis,2016,35(12):1923-1931.
[7]
Goudarzi M, Sabzehali F, Heidary M, et al. Molecular investigation of methicillin-resistant Staphylococcus aureus isolates from blood: USA600 emerges as the major type[J]. J Infect Dev Ctries,2018,12(5):336-341.
[8]
Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition[J]. Semin Cell Dev Biol,2014,36: 157-165.
[9]
Citi S. The mechanobiology of tight junctions[J]. Biophys Rev,2019,11(5):783-793.
[10]
Günzel D, Fromm M. Claudins and other tight junction proteins[J]. Compr Physiol,2012,2(3):1819-1852.
[11]
Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation[J]. Ann N Y Acad Sci,2012,1258:9-18.
[12]
Guttman JA, Samji FN, Li Y, et al. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo[J]. Infect Immun,2006,74(11):6075-6084.
[13]
Altunbulakli C, Costa R, Lan F, et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps[J]. J Allergy Clin Immunol,2018,142(2):665-668.
[14]
Viswanathan VK, Koutsouris A, Lukic S, et al. Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function[J]. Infect Immun,2004,72(6):3218-3227.
[15]
Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells[J]. Cell Microbiol,2004,6(8):783-793.
[16]
Boyle EC, Brown NF, Finlay BB. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function[J]. Cell Microbiol,2006,8(12):1946- 1957.
[17]
Amieva MR, Vogelmann R, Covacci A, et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA[J]. Science,2003,300(5624):1430-1434.
[18]
Bäsler K, Galliano MF, Bergmann S, et al. B iphasic influence of Staphylococcus aureus on human epidermal tight junctions[J]. Ann N Y Acad Sci,2017,1405(1):53-70.
[19]
Kim S, Kim HE, Kang B, et al. Lipoteichoic Acid isolated from Staphylococcus aureus induces both epithelial-mesenchymal transition and wound healing in HaCaT cells[J]. J Microbiol Biotechnol, 2017,27(10):1820-1826.
[20]
Bäsler K, Brandner JM. Tight junctions in skin inflammation[J]. Pflugers Arch,2017,469(1):3-14.
[21]
Guttman JA, Finlay BB. Tight junctions as targets of infectious agents[J]. Biochim Biophys Acta,2009,1788(4):832-841.
[22]
Testoni F, Montanaro L, Poggi A, et al. Internalization by osteoblasts of two Staphylococcus aureus clinical isolates differing in their adhesin gene pattern[J]. Int J Artif Organs,2011,34(9):789-798.
[23]
Fowler T, Wann ER, Joh D, et al. Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins[J]. Eur J Cell Biol,2000,79(10):672-679.
[24]
Casillas-Ituarte NN, Cruz CHB, Lins RD, et al. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation[J]. J Biol Chem,2017,292(21):8797-8810.
[25]
Almeida JF, Breyner NM, Mahi M, et al. Expression of fibronectin binding protein A (FnBPA) from Staphylococcus aureus at the cell surface of Lactococcus lactis improves its immunomodulatory properties when used as protein delivery vector [J]. Vaccine,2016,34(10):1312-1318.
[1] 杜明华, 郭润, 张文华, 胡森. 电针足三里穴对肠缺血再灌注损伤大鼠小肠黏膜上皮紧密连接蛋白ZO-1的调节作用[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 315-321.
[2] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[3] 胡振平, 许辉, 叶茂, 于静. 糖尿病足患者合并耐甲氧西林金黄色葡萄球菌感染的临床研究[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 380-385.
[4] 吴军城, 赵立国. 阿魏酸调控AMPK通路对过氧化氢诱导的肠上皮屏障损伤的保护作用研究[J]. 中华普通外科学文献(电子版), 2021, 15(05): 364-369.
[5] 王权成, 吴文龙, 张玄, 窦科峰, 陶开山. 人外周血单个核细胞分泌细胞因子对α-1,3-半乳糖基转移酶基因敲除猪肝细胞的作用[J]. 中华移植杂志(电子版), 2020, 14(03): 182-187.
[6] 张建, 杨梦琪, 翟京宇. 社区获得性金黄色葡萄球菌肺炎合并镰刀菌感染一例[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 652-654.
[7] 赵安竹, 付辉蓉, 李昀, 陈坚娣, 鲁红云. Cre-LoxP技术构建肝脏特异性HIF-2α基因敲除小鼠模型[J]. 中华肝脏外科手术学电子杂志, 2019, 08(03): 270-275.
[8] 娄元华, 马化芹. 鞘内注射万古霉素治疗重型颅脑外伤开颅术后MRSA颅内感染的临床研究[J]. 中华神经创伤外科电子杂志, 2019, 05(06): 370-372.
[9] 杜霈, 秦瑾, 冯忠军, 郑翠影, 高伟, 宋珮瑶, 刘一冰. MRSA鼻腔筛查可排除MRSA手术部位感染:一项诊断实验meta分析[J]. 中华老年骨科与康复电子杂志, 2020, 06(03): 171-177.
[10] 黄匀, 明静, 龚晨晨, 钟剑敏, 刘旭, 付建宇, 毕红英, 方慧, 唐艳, 刘媛怡, 王迪芬. 重度骨髓抑制致导管源性空洞型重症金黄色葡萄球菌肺炎一例[J]. 中华重症医学电子杂志, 2021, 07(03): 282-284.
[11] 刘军. 耐甲氧西林金黄色葡萄球菌血流感染:关注感染来源和去路[J]. 中华重症医学电子杂志, 2019, 05(02): 109-114.
[12] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144,150.
[13] 孙丹, 姬会春, 祝宇翀, 单宇, 刘军权, 廖雨琴. 三叶青提取物TH-w3对金黄色葡萄球菌生物膜的抑制和清除作用[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 227-232.
[14] 梁慧玲, 韩超, 郑琳颖, 黄桢, 高东华. 翘芩清肺剂对肺炎克雷伯菌和金黄色葡萄球菌的抑菌效果初探[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 13-16.
[15] 欧阳颖仪, 陈盛强, 田丽如, 杨晓怡, 邢晓敏, 庄海明, 黄晓妃, 邓小燕. Fmr1基因敲除型小鼠肠道菌群结构分析[J]. 中华临床实验室管理电子杂志, 2020, 08(03): 158-165.
阅读次数
全文


摘要