切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 32 -40. doi: 10.3877/cma.j.issn.1674-1358.2023.01.006

论著

内毒素打击后小鼠脾脏T淋巴细胞功能恢复动态研究
樊洋1, 李国力1, 郝禹1, 曹钰1, 李方园1, 王锃涛1, 曾辉1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院传染病研究所;新发突发传染病研究北京市重点实验室
  • 收稿日期:2022-02-18 出版日期:2023-02-15
  • 通信作者: 曾辉
  • 基金资助:
    国家自然科学基金(No. 81772123)

Dynamic recovery of splenic T lymphocytes function in mice with endotoxin-induced sepsis

Yang Fan1, Guoli Li1, Yu Hao1, Yu Cao1, Fangyuan Li1, Zengtao Wang1, Hui Zeng1,()   

  1. 1. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
  • Received:2022-02-18 Published:2023-02-15
  • Corresponding author: Hui Zeng
引用本文:

樊洋, 李国力, 郝禹, 曹钰, 李方园, 王锃涛, 曾辉. 内毒素打击后小鼠脾脏T淋巴细胞功能恢复动态研究[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 32-40.

Yang Fan, Guoli Li, Yu Hao, Yu Cao, Fangyuan Li, Zengtao Wang, Hui Zeng. Dynamic recovery of splenic T lymphocytes function in mice with endotoxin-induced sepsis[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(01): 32-40.

目的

探讨脂多糖(LPS)打击后,小鼠脾脏T淋巴细胞亚群及功能的动态恢复过程。

方法

采用高剂量LPS(10 mg/kg)腹腔单次注射建立小鼠脓毒症模型,在LPS打击后第0 d、7 d,14 d和28 d,使用流式细胞术动态检测脾脏CD4+ T和CD8+ T细胞中初始T细胞、效应记忆T细胞和中央记忆T细胞的比例以及细胞表面活化分子(CD38和CD69)和共抑制分子(PD-1和TIGIT)的表达水平,分泌细胞因子IL-2和IFN-γ及释放颗粒酶B的能力。正态分布数据采用one-way ANOVA检验进行方差分析,Holm-Sidak’s进行多重比较;偏态分布数据则采用Kruskal-Wallis检验进行分析,Bonferroni法进行多重比较。

结果

LPS打击7 d后,与基线相比,小鼠脾脏初始CD4+ T和CD8+ T细胞比例均显著降低(F = 52.22、P < 0.0001,F = 10.87、P = 0.0019);效应记忆CD4+ T和CD8+ T细胞比例均显著增高(F = 20.54、P < 0.0001,F = 26.03、P < 0.0001);CD4+CD38+F = 35.40、P < 0.0001)、CD4+CD69+F = 45.65、P < 0.0001)、CD4+PD-1+F = 20.55、P < 0.0001)、CD4+TIGIT+F = 19.20、P < 0.0001)、CD8+CD38+F = 56.76、P < 0.0001)、CD8+CD69+F = 59.47、P < 0.0001)、CD8+PD-1+F = 11.15、P = 0.0013)和CD8+TIGIT+F = 21.21、P < 0.0001)细胞比例均显著增高,差异均有统计学意义。与基线相比,LPS打击14 d后细胞活化水平、共抑制分子表达水平逐渐恢复,但至28 d时,初始CD4+ T细胞(F = 52.22、P < 0.0001)、效应记忆CD4+ T细胞(F = 20.54、P = 0.0093)、CD4+CD69+F = 45.65、P = 0.0037)、CD4+PD-1+F = 20.55、P = 0.0255)和CD4+TIGIT+F = 19.20、P = 0.0087)未恢复至基线水平;CD8+IFN-γ+ T细胞比例(F = 14.33、P = 0.0343)仍高于基线水平,差异均有统计学意义。

结论

LPS打击后28 d小鼠脾脏CD4+ T和CD8+ T细胞恢复过程存在差异,CD4+ T细胞功能总体恢复较CD8+ T细胞更为缓慢。

Objective

To investigate the dynamic recovery process of splenic T lymphocyte function and their subsets in mice after lipopolysaccharide (LPS) administration.

Methods

High dose LPS (10 mg/kg, once) was administered intraperitoneally to establish septic mouse model. On day 0, day 7, day 14, and day 28 after LPS treatment, flow cytometry was used to check the proportions of naive T cells, effector memory T cells, and central memory T cells in splenic CD4+ and CD8+ T cells. The expression of cell surface activation molecules (CD38, CD69) and co-inhibitory molecules (PD-1, TIGIT), as well as the ability of splenic CD4+ T cells to secrete cytokines IL-2, IFN-γ and CD8+ T cells to release granzyme B. Normal distribution data used one-way ANOVA test for variance analysis and used holm-Sidak’s test for multiple comparison. Skewness distribution data used Kruskal-wallis test for variance analysis and used Bonferroni method for multiple comparison.

Results

On day 7 after LPS challenge, compared with the baseline, the proportions of splenic naive CD4+ and CD8+ T cells in mice were significantly decreased (F = 52.22, P < 0.0001; F = 10.87, P = 0.0019); the proportions of effector memory CD4+ and CD8+ T cells were significantly increased (F = 20.54, P < 0.0001; F = 26.03, P < 0.0001); the proportions of CD4+CD38+ (F = 35.40, P < 0.0001), CD4+CD69+ (F = 45.65, P < 0.0001), CD4+PD-1+ (F = 20.55, P < 0.0001), CD4+TIGIT+ (F = 19.20, P < 0.0001), CD8+CD38+ (F = 56.76, P < 0.0001), CD8+CD69+ (F = 59.47, P < 0.0001), CD8+PD-1+ (F = 11.15, P = 0.0013) and CD8+TIGIT+ (F = 21.21, P < 0.0001) cells were significantly increased. These indicators gradually recovered compared with the baseline within 14 days. On day 28 after LPS challenge, the proportions of naive CD4+ T cells (F = 52.22, P < 0.0001), effector memory CD4+ T cells (F = 20.54, P = 0.0093), CD4+CD69+ (F = 45.65, P = 0.0037), CD4+PD-1+ (F = 20.55, P = 0.0255) and CD4+TIGIT+ (F = 19.20, P = 0.0087) cells were not returned to the baseline level; the proportion of CD8+IFN-γ+ T cells (F = 14.33, P < 0.0001) was still higher than the baseline.

Conclusions

After LPS challenge, differences exist during the recovery process of splenic CD4+ T and CD8+ T cells in mice within 28 days. The overall recovery process of splenic CD4+ T cells function in septic mice was slower than that of CD8+ T cells after LPS treatment.

表1 脂多糖(10 mg/kg)打击后小鼠脾脏细胞数量( ± s,× 107/脾)
图1 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞亚群比例注:小鼠脾脏T细胞亚群:CD62L+CD44初始T细胞、CD62LCD44+效应记忆T细胞和CD62L+CD44+中央记忆T细胞。A:LPS打击7 d、14 d和28 d后CD4+ T细胞亚群比例的变化;B:LPS打击7 d、14 d和28 d后CD8+ T细胞亚群比例的变化
图2 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞表面CD38和CD69阳性细胞比例注:A:LPS打击7 d、14 d和28 d后CD4+T细胞CD38和CD69阳性细胞比例变化;B:LPS打击7 d、14 d和28 d后CD8+ T细胞CD38和CD69阳性细胞比例变化
图3 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞表面PD-1和TIGIT阳性细胞比例注:A:LPS打击7 d、14 d和28 d后CD4+ T细胞PD-1和TIGIT阳性细胞比例变化;B:LPS打击7 d、14 d和28 d后CD8+ T细胞PD-1和TIGIT阳性细胞比例变化
图4 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞细胞因子分泌能力变化注:A:LPS打击7 d、14 d和28 d后用PMA和离子霉素体外刺激脾脏CD4+ T细胞,检测分泌IL-2和IFN-γ能力的变化;B:LPS打击7 d、14 d和28 d后用PMA和离子霉素体外刺激脾脏CD8+ T细胞,检测分泌IL-2子IFN-γ能力的变化;C:LPS打击7 d、14 d和28 d后用PMA和离子霉素体外刺激脾脏CD8+ T细胞,检测释放Granzyme B能力的变化
[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA,2016,315(8):801-810.
[2]
Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority-A WHO resolution[J]. N Engl J Med,2017,377(5):414-417.
[3]
Hotchkiss RS, Monneret G and Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol,2013,13(12):862-874.
[4]
Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev,2016,274(1):330-353.
[5]
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis[J]. Immunity,2021,54(11):2450-2464.
[6]
Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis[J]. Nat Rev Nephrol,2020,16(1):20-31.
[7]
Jensen IJ, Sjaastad FV, Griffith TS, et al. Sepsis-induced T cell immunoparalysis: The ins and outs of impaired T cell immunity[J]. J Immunol,2018,200(5):1543-1553.
[8]
Nedeva C. Inflammation and cell death of the innate and adaptive immune system during sepsis[J]. Biomolecules,2021,11(7):1011.
[9]
He W, Xiao K, Fang M, et al. Immune cell number, phenotype, and function in the elderly with Sepsis[J]. Aging Dis,2021,12(1):277-296.
[10]
Sjaastad FV, Kucaba TA, Dileepan T, et al. Polymicrobial sepsis impairs antigen-specific memory CD4 T cell-mediated immunity[J]. Front Immunol,2020,11:1786.
[11]
Zhu J. T Helper cell differentiation, heterogeneity, and plasticity[J]. Cold Spring Harb Perspect Biol,2018,10(10):a030338.
[12]
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and molecular mechanisms of CD8 T cell differentiation, dysfunction and exhaustion[J]. Int J Mol Sci,2020,21(19):7357.
[13]
Dong C. Cytokine regulation and function in T cells[J]. Annu Rev Immunol,2021,39:51-76.
[14]
Bala N, McGurk AI, Zilch T, et al. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues[J]. Immunol Rev,2022,306(1):164-180.
[15]
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA,2011,306(23):2594-2605.
[16]
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen[J]. Sci Immunol,2019,4(33):eaau6085.
[17]
Hensel JA, Khattar V, Ashton R, et al. Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations[J]. Lab Invest,2019,99(1):93-106.
[18]
Ramos MFP, Monteiro de Barros ADCM, Razvickas CV, et al. Xanthine oxidase inhibitors and sepsis[J]. Int J Immunopathol Pharmacol,2018,32:1-14.
[19]
Li XK, Yang SC, Bi L, et al. Effects of dexmedetomidine on sepsis-induced liver injury in rats[J]. Eur Rev Med Pharmacol Sci,2019,23(Suppl 3):177-183.
[20]
Jia B, Zhao C, Li G, et al. A novel CD48-based analysis of sepsis-induced mouse myeloid-derived suppressor cell compartments[J]. Mediators Inflamm,2017,2017:7521701.
[21]
Lee JYM, Love PE. Assessment of T cell development by flow cytometry[M]. Methods Mol Biol,2016,1323:47-64.
[22]
Allman D, Sambandam A, Kim S, et al. Thymopoiesis independent of common lymphoid progenitors[J]. Nat Immunol,2003,4(2):168-174.
[23]
Conway-Morris A, Wilson J, Shankar-Hari M. Immune activation in sepsis[J]. Crit Care Clin,2018,34(1):29-42.
[24]
Trzeciak A, Pietropaoli AP, Kim M. Biomarkers and associated immune mechanisms for early detection and therapeutic management of sepsis[J]. Immune Network,2020,20(3):e23.
[25]
Prescott HC, Angus DC. Enhancing recovery from sepsis: A review[J]. JAMA,2018,319(1):62-75.
[26]
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci,2015,72(3):557-581.
[27]
Savi FF, de Oliveira A, de Medeiros GF, et al. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review[J]. Neurosci Biobehav Rev,2021,124:386-404.
[28]
林涛, 孔雅娴, 贾蓓, 等. 脂多糖所致脓毒症诱导的急性肺损伤肺组织T淋巴细胞活化及共刺激分子表达的研究[J/CD]. 中华实验和临床感染病杂志(电子版),2015,9(2):272-275.
[29]
Ammer-Herrmenau C, Kulkarni U, Andreas N, et al. Sepsis induces long-lasting impairments in CD4+ T-cell responses despite rapid numerical recovery of T-lymphocyte populations[J]. PLoS One,2019,14(2):e0211716.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[4] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[5] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[6] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[7] 卓文锋, 曾桂芳, 杨思加, 赵家立, 邹宝嘉, 白子锐, 林恩, 李坚. 腹腔镜巨脾切除术:逐步打破的手术壁垒[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 783-788.
[8] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[9] 李澄清, 郭文毅, 王磊. 腹腔镜保留脾脏胰体尾切除术:微创胰腺外科的合理决策[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 620-624.
[10] 伍细蓉, 徐立文, 陈亚琼. 基于LPR和FARI构建肝衰竭患者生存预后模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 675-681.
[11] 何慧玲, 鲁祖斌, 冯嘉莉, 梁声强. 术前外周血NLR和PLR对结肠癌术后肝转移的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 682-687.
[12] 施麟宵, 洪兰兰, 阳柳, 芶碧珍, 刘畅, 吴欣. 钠-葡萄糖协同转运蛋白2 抑制剂治疗原发性膜性肾病的疗效及其对Th1/Th2 的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 261-267.
[13] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[14] 崔健, 夏青, 林云, 李光玲, 李心娜, 王位. 血小板与淋巴细胞比值、免疫球蛋白、心肌酶谱及心电图对中老年肝硬化患者病情及预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 400-406.
[15] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
阅读次数
全文


摘要