切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 32 -40. doi: 10.3877/cma.j.issn.1674-1358.2023.01.006

论著

内毒素打击后小鼠脾脏T淋巴细胞功能恢复动态研究
樊洋1, 李国力1, 郝禹1, 曹钰1, 李方园1, 王锃涛1, 曾辉1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院传染病研究所;新发突发传染病研究北京市重点实验室
  • 收稿日期:2022-02-18 出版日期:2023-02-15
  • 通信作者: 曾辉
  • 基金资助:
    国家自然科学基金(No. 81772123)

Dynamic recovery of splenic T lymphocytes function in mice with endotoxin-induced sepsis

Yang Fan1, Guoli Li1, Yu Hao1, Yu Cao1, Fangyuan Li1, Zengtao Wang1, Hui Zeng1,()   

  1. 1. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
  • Received:2022-02-18 Published:2023-02-15
  • Corresponding author: Hui Zeng
引用本文:

樊洋, 李国力, 郝禹, 曹钰, 李方园, 王锃涛, 曾辉. 内毒素打击后小鼠脾脏T淋巴细胞功能恢复动态研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 32-40.

Yang Fan, Guoli Li, Yu Hao, Yu Cao, Fangyuan Li, Zengtao Wang, Hui Zeng. Dynamic recovery of splenic T lymphocytes function in mice with endotoxin-induced sepsis[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(01): 32-40.

目的

探讨脂多糖(LPS)打击后,小鼠脾脏T淋巴细胞亚群及功能的动态恢复过程。

方法

采用高剂量LPS(10 mg/kg)腹腔单次注射建立小鼠脓毒症模型,在LPS打击后第0 d、7 d,14 d和28 d,使用流式细胞术动态检测脾脏CD4+ T和CD8+ T细胞中初始T细胞、效应记忆T细胞和中央记忆T细胞的比例以及细胞表面活化分子(CD38和CD69)和共抑制分子(PD-1和TIGIT)的表达水平,分泌细胞因子IL-2和IFN-γ及释放颗粒酶B的能力。正态分布数据采用one-way ANOVA检验进行方差分析,Holm-Sidak’s进行多重比较;偏态分布数据则采用Kruskal-Wallis检验进行分析,Bonferroni法进行多重比较。

结果

LPS打击7 d后,与基线相比,小鼠脾脏初始CD4+ T和CD8+ T细胞比例均显著降低(F = 52.22、P < 0.0001,F = 10.87、P = 0.0019);效应记忆CD4+ T和CD8+ T细胞比例均显著增高(F = 20.54、P < 0.0001,F = 26.03、P < 0.0001);CD4+CD38+F = 35.40、P < 0.0001)、CD4+CD69+F = 45.65、P < 0.0001)、CD4+PD-1+F = 20.55、P < 0.0001)、CD4+TIGIT+F = 19.20、P < 0.0001)、CD8+CD38+F = 56.76、P < 0.0001)、CD8+CD69+F = 59.47、P < 0.0001)、CD8+PD-1+F = 11.15、P = 0.0013)和CD8+TIGIT+F = 21.21、P < 0.0001)细胞比例均显著增高,差异均有统计学意义。与基线相比,LPS打击14 d后细胞活化水平、共抑制分子表达水平逐渐恢复,但至28 d时,初始CD4+ T细胞(F = 52.22、P < 0.0001)、效应记忆CD4+ T细胞(F = 20.54、P = 0.0093)、CD4+CD69+F = 45.65、P = 0.0037)、CD4+PD-1+F = 20.55、P = 0.0255)和CD4+TIGIT+F = 19.20、P = 0.0087)未恢复至基线水平;CD8+IFN-γ+ T细胞比例(F = 14.33、P = 0.0343)仍高于基线水平,差异均有统计学意义。

结论

LPS打击后28 d小鼠脾脏CD4+ T和CD8+ T细胞恢复过程存在差异,CD4+ T细胞功能总体恢复较CD8+ T细胞更为缓慢。

Objective

To investigate the dynamic recovery process of splenic T lymphocyte function and their subsets in mice after lipopolysaccharide (LPS) administration.

Methods

High dose LPS (10 mg/kg, once) was administered intraperitoneally to establish septic mouse model. On day 0, day 7, day 14, and day 28 after LPS treatment, flow cytometry was used to check the proportions of naive T cells, effector memory T cells, and central memory T cells in splenic CD4+ and CD8+ T cells. The expression of cell surface activation molecules (CD38, CD69) and co-inhibitory molecules (PD-1, TIGIT), as well as the ability of splenic CD4+ T cells to secrete cytokines IL-2, IFN-γ and CD8+ T cells to release granzyme B. Normal distribution data used one-way ANOVA test for variance analysis and used holm-Sidak’s test for multiple comparison. Skewness distribution data used Kruskal-wallis test for variance analysis and used Bonferroni method for multiple comparison.

Results

On day 7 after LPS challenge, compared with the baseline, the proportions of splenic naive CD4+ and CD8+ T cells in mice were significantly decreased (F = 52.22, P < 0.0001; F = 10.87, P = 0.0019); the proportions of effector memory CD4+ and CD8+ T cells were significantly increased (F = 20.54, P < 0.0001; F = 26.03, P < 0.0001); the proportions of CD4+CD38+ (F = 35.40, P < 0.0001), CD4+CD69+ (F = 45.65, P < 0.0001), CD4+PD-1+ (F = 20.55, P < 0.0001), CD4+TIGIT+ (F = 19.20, P < 0.0001), CD8+CD38+ (F = 56.76, P < 0.0001), CD8+CD69+ (F = 59.47, P < 0.0001), CD8+PD-1+ (F = 11.15, P = 0.0013) and CD8+TIGIT+ (F = 21.21, P < 0.0001) cells were significantly increased. These indicators gradually recovered compared with the baseline within 14 days. On day 28 after LPS challenge, the proportions of naive CD4+ T cells (F = 52.22, P < 0.0001), effector memory CD4+ T cells (F = 20.54, P = 0.0093), CD4+CD69+ (F = 45.65, P = 0.0037), CD4+PD-1+ (F = 20.55, P = 0.0255) and CD4+TIGIT+ (F = 19.20, P = 0.0087) cells were not returned to the baseline level; the proportion of CD8+IFN-γ+ T cells (F = 14.33, P < 0.0001) was still higher than the baseline.

Conclusions

After LPS challenge, differences exist during the recovery process of splenic CD4+ T and CD8+ T cells in mice within 28 days. The overall recovery process of splenic CD4+ T cells function in septic mice was slower than that of CD8+ T cells after LPS treatment.

表1 脂多糖(10 mg/kg)打击后小鼠脾脏细胞数量( ± s,× 107/脾)
图1 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞亚群比例注:小鼠脾脏T细胞亚群:CD62L+CD44初始T细胞、CD62LCD44+效应记忆T细胞和CD62L+CD44+中央记忆T细胞。A:LPS打击7 d、14 d和28 d后CD4+ T细胞亚群比例的变化;B:LPS打击7 d、14 d和28 d后CD8+ T细胞亚群比例的变化
图2 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞表面CD38和CD69阳性细胞比例注:A:LPS打击7 d、14 d和28 d后CD4+T细胞CD38和CD69阳性细胞比例变化;B:LPS打击7 d、14 d和28 d后CD8+ T细胞CD38和CD69阳性细胞比例变化
图3 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞表面PD-1和TIGIT阳性细胞比例注:A:LPS打击7 d、14 d和28 d后CD4+ T细胞PD-1和TIGIT阳性细胞比例变化;B:LPS打击7 d、14 d和28 d后CD8+ T细胞PD-1和TIGIT阳性细胞比例变化
图4 LPS(10 mg/kg)腹腔注射后小鼠脾脏T细胞细胞因子分泌能力变化注:A:LPS打击7 d、14 d和28 d后用PMA和离子霉素体外刺激脾脏CD4+ T细胞,检测分泌IL-2和IFN-γ能力的变化;B:LPS打击7 d、14 d和28 d后用PMA和离子霉素体外刺激脾脏CD8+ T细胞,检测分泌IL-2子IFN-γ能力的变化;C:LPS打击7 d、14 d和28 d后用PMA和离子霉素体外刺激脾脏CD8+ T细胞,检测释放Granzyme B能力的变化
[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA,2016,315(8):801-810.
[2]
Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority-A WHO resolution[J]. N Engl J Med,2017,377(5):414-417.
[3]
Hotchkiss RS, Monneret G and Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol,2013,13(12):862-874.
[4]
Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev,2016,274(1):330-353.
[5]
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis[J]. Immunity,2021,54(11):2450-2464.
[6]
Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis[J]. Nat Rev Nephrol,2020,16(1):20-31.
[7]
Jensen IJ, Sjaastad FV, Griffith TS, et al. Sepsis-induced T cell immunoparalysis: The ins and outs of impaired T cell immunity[J]. J Immunol,2018,200(5):1543-1553.
[8]
Nedeva C. Inflammation and cell death of the innate and adaptive immune system during sepsis[J]. Biomolecules,2021,11(7):1011.
[9]
He W, Xiao K, Fang M, et al. Immune cell number, phenotype, and function in the elderly with Sepsis[J]. Aging Dis,2021,12(1):277-296.
[10]
Sjaastad FV, Kucaba TA, Dileepan T, et al. Polymicrobial sepsis impairs antigen-specific memory CD4 T cell-mediated immunity[J]. Front Immunol,2020,11:1786.
[11]
Zhu J. T Helper cell differentiation, heterogeneity, and plasticity[J]. Cold Spring Harb Perspect Biol,2018,10(10):a030338.
[12]
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and molecular mechanisms of CD8 T cell differentiation, dysfunction and exhaustion[J]. Int J Mol Sci,2020,21(19):7357.
[13]
Dong C. Cytokine regulation and function in T cells[J]. Annu Rev Immunol,2021,39:51-76.
[14]
Bala N, McGurk AI, Zilch T, et al. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues[J]. Immunol Rev,2022,306(1):164-180.
[15]
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA,2011,306(23):2594-2605.
[16]
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen[J]. Sci Immunol,2019,4(33):eaau6085.
[17]
Hensel JA, Khattar V, Ashton R, et al. Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations[J]. Lab Invest,2019,99(1):93-106.
[18]
Ramos MFP, Monteiro de Barros ADCM, Razvickas CV, et al. Xanthine oxidase inhibitors and sepsis[J]. Int J Immunopathol Pharmacol,2018,32:1-14.
[19]
Li XK, Yang SC, Bi L, et al. Effects of dexmedetomidine on sepsis-induced liver injury in rats[J]. Eur Rev Med Pharmacol Sci,2019,23(Suppl 3):177-183.
[20]
Jia B, Zhao C, Li G, et al. A novel CD48-based analysis of sepsis-induced mouse myeloid-derived suppressor cell compartments[J]. Mediators Inflamm,2017,2017:7521701.
[21]
Lee JYM, Love PE. Assessment of T cell development by flow cytometry[M]. Methods Mol Biol,2016,1323:47-64.
[22]
Allman D, Sambandam A, Kim S, et al. Thymopoiesis independent of common lymphoid progenitors[J]. Nat Immunol,2003,4(2):168-174.
[23]
Conway-Morris A, Wilson J, Shankar-Hari M. Immune activation in sepsis[J]. Crit Care Clin,2018,34(1):29-42.
[24]
Trzeciak A, Pietropaoli AP, Kim M. Biomarkers and associated immune mechanisms for early detection and therapeutic management of sepsis[J]. Immune Network,2020,20(3):e23.
[25]
Prescott HC, Angus DC. Enhancing recovery from sepsis: A review[J]. JAMA,2018,319(1):62-75.
[26]
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci,2015,72(3):557-581.
[27]
Savi FF, de Oliveira A, de Medeiros GF, et al. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review[J]. Neurosci Biobehav Rev,2021,124:386-404.
[28]
林涛, 孔雅娴, 贾蓓, 等. 脂多糖所致脓毒症诱导的急性肺损伤肺组织T淋巴细胞活化及共刺激分子表达的研究[J/CD]. 中华实验和临床感染病杂志(电子版),2015,9(2):272-275.
[29]
Ammer-Herrmenau C, Kulkarni U, Andreas N, et al. Sepsis induces long-lasting impairments in CD4+ T-cell responses despite rapid numerical recovery of T-lymphocyte populations[J]. PLoS One,2019,14(2):e0211716.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[6] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[7] 陈静, 张春明, 周斌, 吴明明. 甲苯磺酸瑞马唑仑联合瑞芬太尼全身麻醉对胸腔镜肺叶切除患者术后应激反应及血清PAF、γ干扰素的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 554-556.
[8] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[9] 王娟, 高俊, 周伊兰, 李小红, 史兵伟, 潘美珍. 血清IL-2、IL-17和骨密度关系及其对骨质疏松症的预测价值[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 295-300.
[10] 王庆, 夏婷婷. 未成熟粒细胞计数、C反应蛋白、中性粒细胞/淋巴细胞、降钙素原结合MCTSI评分在急性胆源性胰腺炎中的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 224-228.
[11] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[12] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[13] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[14] 牛文博, 吴凤鹏, 刘月平, 周超熙, 张娟, 胡旭华, 李保坤, 王贵英. 新辅助放化疗对局部进展期直肠癌疗效及肿瘤免疫微环境变化的研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 519-523.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要