切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 370 -376. doi: 10.3877/cma.j.issn.1674-1358.2022.06.003

论著

铜绿假单胞菌分泌蛋白Pec1抑制巨噬细胞自噬及影响铜绿假单胞菌清除效应初步观察
张长文1, 林少清1, 吕敏捷1, 金霄1, 朱常军1, 冯旰珠1,()   
  1. 1. 210011 南京市,南京医科大学第二附属医院呼吸与危重症学科
  • 收稿日期:2022-09-12 出版日期:2022-12-15
  • 通信作者: 冯旰珠
  • 基金资助:
    国家自然科学基金(No. 81870009)

Inhibition of autophagy of macrophages by secreted protein Pec1 of Pseudomonas aeruginosa and its effect on clearance of Pseudomonas aeruginosa

Changwen Zhang1, Shaoqing Lin1, Minjie Lv1, Xiao Jin1, Changjun Zhu1, Ganzhu Feng1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University 210011, China
  • Received:2022-09-12 Published:2022-12-15
  • Corresponding author: Ganzhu Feng
引用本文:

张长文, 林少清, 吕敏捷, 金霄, 朱常军, 冯旰珠. 铜绿假单胞菌分泌蛋白Pec1抑制巨噬细胞自噬及影响铜绿假单胞菌清除效应初步观察[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 370-376.

Changwen Zhang, Shaoqing Lin, Minjie Lv, Xiao Jin, Changjun Zhu, Ganzhu Feng. Inhibition of autophagy of macrophages by secreted protein Pec1 of Pseudomonas aeruginosa and its effect on clearance of Pseudomonas aeruginosa[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2022, 16(06): 370-376.

目的

观察铜绿假单胞菌(PA)分泌蛋白Pec1通过抑制小鼠肺泡巨噬细胞(MH-S)自噬而影响其对铜绿假单胞菌清除效应。

方法

体外予Pec1蛋白、PAO1灭活菌、PAO1灭活菌+ Pec1蛋白、PAO1活菌、Pec1蛋白敲除活菌(PAO1Δpec1)与小鼠肺泡巨噬细胞(MH-S)共培养,实时定量逆转录聚合酶链反应(qRT-PCR)检测自噬标志物微管相关蛋白轻链3(LC3)的mRNA表达水平;Western blot检测自噬标志物LC3蛋白表达水平;透射电镜下观察MH-S细胞自噬小体的形成;通过细菌探针荧光原位杂交技术(FISH)联合激光扫描共聚焦显微镜检测MH-S细胞胞内活菌、MH-S细胞破壁后菌落计数,计算MH-S细胞胞内杀菌效率。LC3的mRNA及蛋白表达水平、透射电镜下MH-S细胞自噬小体的数量、MH-S细胞胞内杀菌效率呈正态分布,组间比较采用两独立样本t检验。

结果

Pec1蛋白组、PAO1灭活菌+ Pec1蛋白组和PAO1活菌组自噬标志物LC3的mRNA表达水平分别为(0.624 ± 0.071)、(0.614 ± 0.069)和(0.752 ± 0.098),分别低于对照组(1.071 ± 0.147)(t = 2.723、P = 0.044)、PAO1灭活菌组(1.098 ± 0.144)(t = 2.950、P = 0.028)和Pec1蛋白敲除活菌组(1.214 ± 0.229)(t = 2.816、P = 0.037),差异均有统计学意义;Pec1蛋白组、PAO1灭活菌+ Pec1蛋白组和PAO1活菌组蛋白LC3-Ⅱ/ LC3-Ⅰ比值分别为(0.396 ± 0.063)、(0.384 ± 0.070)和(0.771 ± 0.080),分别低于对照组(1.000 ± 0.043)(t = 8.130、P < 0.001)、PAO1灭活菌组(0.947 ± 0.055)(t = 7.573、P < 0.001)和Pec1蛋白敲除活菌组(1.080 ± 0.185)(t = 4.166、P = 0.002),差异均有统计学意义;Pec1蛋白组、PAO1灭活菌+ Pec1蛋白组和PAO1活菌组自噬小体数量分别为(1.330 ± 0.577)、(1.670 ± 0.577)和(1.330 ± 0.577),分别低于对照组(4.330 ± 0.577)(t = 5.692、P < 0.001)、PAO1灭活菌组(4.670 ± 0.577)(t = 5.692、P < 0.001)和Pec1蛋白敲除活菌组(4.000 ± 1.000)(t = 5.060、P < 0.001),差异均有统计学意义。通过细菌探针FISH联合激光扫描共聚焦显微镜检测MH-S胞内活菌,计算出MH-S细胞对PAO1及PAO1Δpec1的胞内杀菌效率分别为(39.3 ± 3.4)%和(82.2 ± 1.3)%,两组差异具有统计学意义(t = 4.908、P = 0.005);通过菌落计数计算出MH-S细胞对PAO1及PAO1Δpec1的胞内杀菌效率分别为(18.4 ± 4.1)%和(42.2 ± 1.4)%,差异具有统计学意义(t = 8.576、P < 0.001)。

结论

Pec1可能通过抑制MH-S细胞自噬削弱对铜绿假单胞菌清除。

Objective

To investigate the effect of secreted protein Pec1 of Pseudomonas aeruginosa on the clearance of Pseudomonas aeruginosa by inhibiting the autophagy of mouse alveolar macrophages (MH-S).

Methods

Pec1, inactivated bacteria of PAO1, inactivated bacteria of PAO1 + Pec1, viable bacteria of PAO1, Pec1 protein knockout viable bacteria of PA (PAO1ΔPec1) and mouse alveolar macrophages (MH-S) were co-cultured in vitro. The mRNA expression level of autophagy marker microtubule-associated protein light chain 3 (LC3) was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The levels of autophagy marker LC3 protein was detected by Western blot. The formation of autophagosomes in MH-S cells was observed by transmission electron microscopy. The count of MH-S intracellular viable bacteria was detected by microbial fluorescence in situ hybridization (FISH) combined with confocal laser scanning microscope and the intracellular bacterial load was evaluated by colony-forming units (CFU) assay, and the intracellular bactericidal efficiency of MH-S cells was calculated. The mRNA and protein expression levels of LC3, the number of autophagosomes in MH-S cells under transmission electron microscope, and the intracellular bactericidal efficiency of MH-S cells were normally distributed, and the comparison between groups was performed by two independent samples t-test.

Results

The mRNA expression levels of autophagy marker LC3 in Pec1 protein group, inactivated bacteria of PAO1 + Pec1 protein group and viable bacteria of PAO1 group were (0.624 ± 0.071), (0.614 ± 0.069) and (0.752 ± 0.098), respectively, which were significantly lower than those of control group (1.071 ± 0.147) (t = 2.723, P = 0.044), inactivated bacteria of PAO1 group (1.098 ± 0.144) (t = 2.950, P = 0.028) and Pec1 protein knockout viable bacteria group (1.214 ± 0.229) (t = 2.816, P = 0.037), with significant differences. The LC3-Ⅱ/LC3-Ⅰratios of Pec1 protein group, inactivated bacteria of PAO1 + Pec1 protein group and live bacteria of PAO1 group were (0.396 ± 0.063), (0.384 ± 0.070) and (0.771 ± 0.080), respectively, which were significantly lower than those of the control group (1.000 ± 0.043) (t = 8.130, P < 0.001), inactivated bacteria of PAO1 group (0.947 ± 0.055) (t = 7.573, P < 0.001) and Pec1 protein knockout viable bacteria group (1.080 ± 0.185) (t = 4.166, P = 0.002), with significant differences. The number of autophagosomes in Pec1 protein group, inactivated bacteria of PAO1 +Pec1 protein group and live bacteria of PAO1 group were (1.330 ± 0.577), (1.670 ± 0.577) and (1.330 ± 0.577), respectively, which were significantly lower than those of control group (4.330 ± 0.577) (t = 5.692, P < 0.001), inactivated bacteria of PAO1 group (4.670 ± 0.577) (t = 5.692, P < 0.001) and Pec1 protein knockout viable group (4.000 ± 1.000) (t = 5.060, P < 0.001), with significant differences. The intracellular viability of MH-S cells was detected by bacterial probe FISH combined with confocal laser scanning microscope. The intracellular bactericidal efficiency of MH-S cells against PAO1 and PAO1ΔPec1 were calculated (39.3 ± 3.4)% and (82.2 ± 1.3)%, with significant difference (t = 4.908, P = 0.005). By the colony-forming units (CFU) assay, the intracellular bactericidal efficiency of MH-S cells against PAO1 and PAO1ΔPec1 was calculated as (18.4 ± 4.1)% and (42.2 ± 1.4)%, respectively, with significant difference (t = 8.576, P < 0.001).

Conclusion

Pec1 may inhibit the clearance of Pseudomonas aeruginosa by inhibiting autophagy in MH-S cells.

图1 Pec1蛋白刺激对MH-S细胞LC3蛋白及mRNA表达水平的影响注:A、B分别为Western blot及其半定量比较;C:各组LC3 mRNA相对表达水平
表1 TEM单个视野下(× 15 000)各组MH-S细胞自噬小体的数量
图2 TEM下观察各组MH-S细胞自噬小体形成注:白色箭头示MH-S细胞内自噬小体(× 15 000)
图3 Pec1蛋白对MH-S细胞清除PA的影响注:A、B分别为PAO1活菌及PAO1Δpec1感染MH-S细胞1 h及2 h破壁裂解后的菌落计数、相应胞内杀菌效率;C、D为CLSM下MH-S细胞吞入胞内的PAO1活菌及PAO1Δpec1情况(× 600),DAPI(蓝)染细胞核,CY3(红)染PAO1及PAO1Δpec1;E为根据CLSM观察结果计算的胞内杀菌效率
图4 自噬激动剂Rap促进MH-S细胞对PA的清除注:A、B为两种不同处理方式后的菌落计数及胞内杀菌效率
[1]
陈思遐,沈自燕,冯旰珠. 铜绿假单胞菌毒力因子的研究进展[J]. 国际呼吸杂志,2018,38(18):1410-1413.
[2]
郑多金,林淑瑜,殷超, 等. 315株铜绿假单胞菌医院感染的临床分布与耐药性分析[J/CD]. 中华实验和临床感染病杂志(电子版),2015,9(1):61-64.
[3]
中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版)[J]. 中华结核和呼吸杂志,2022,45(8):739-752.
[4]
Zhang Y, Yao Z, Zhan S et al. Disease burdenof intensive care unit-acquired pneumonia in China: a systematic review andmeta-analysis[J]. Int J Infect Dis,2014,29(12):84-90.
[5]
Rodrigo-Troyano A, Sibila O, The respiratory threat posed by multidrug resistant Gram-negative bacteria[J]. Respirology, 2017,22(7):1288-1299.
[6]
Flannagan RS, Cosio G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies[J]. Nat Rev Microbiol,2009,7(5):355-366.
[7]
Cheung DO, Halsey K, Speert DP. Role of pulmonary alveolar macrophages indefense of the lung against Pseuonas aeruginosa[J]. Infect Immun,2000,68(8):4585-4592.
[8]
Feng Y, He D, Yao Z, et al. The machinery of macroautophagy[J]. Cell Res,2014;24(1):24-41.
[9]
Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes[J]. Immunol Rev,2011,240(1):92-104.
[10]
Rao L, De La Rosa I, Xu Y, et al. Pseudomonas aeruginosa survives in epithelia by ExoS-mediated inhibition of autophagy and mTOR[J]. EMBO Rep,2021,22(2):e50613.
[11]
Zrieq R, Sana TG, Vergin S, et al. Genome-wide screen of Pseudomonas aeruginosa in saccharomycescerevisiae identifies new virulence factors[J]. Front Cell Infect Microbiol,2015,5(11):81.
[12]
Jain N, Moeller J, Vogel V. Mechanobiology of macrophages: how physical factors coregulate macrophage plasticity and phagocytosis[J]. Annu Rev Biomed Eng,2019,21(6):267-297.
[13]
Marriott HM, Dockrell DH. The role of the macrophage in lung disease mediated by bacteria[J]. Exp Lung Res,2007,33(10):493-505.
[14]
Liu C, Qi J, Shan B, et al. Pretreatment with cathelicidin-BF ameliorates Pseudomonas aeruginosa pneumonia in mice by enhancing NETosis and the autophagy of recruited neutrophils and macrophages[J]. Int Immunopharmacol,2018,65(12):382-391.
[15]
Yuan K, Huang C, Fox J, et al. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages[J]. J Cell Sci,2012,125(Pt 2):507-515.
[16]
Deng Q, Wang Y, Zhang Y, et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome[J]. Infect Immun,2015,14,84(1):56-66.
[17]
Wu Y, Li D, Wang Y, et al. Pseudomonas aeruginosa promotes autophagy to suppress macrophage-mediated bacterial eradication[J]. Int Immunopharmacol,2016,38(9):214-222.
[18]
Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy,2018,14(2):207-215.
[19]
Burman C, Ktistakis NT. Autophagosome formation in mammalian cells[J]. Semin Immunopathol,2010,32(4):397-413.
[20]
Jabir MS, Ritchie ND, Li D, et al. Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection[J]. Cell Host Microbe,2014,15(2): 214-227.
[21]
林少清,舒磊,杜兴冉, 等. 铜绿假单胞菌分泌蛋白Pec1抑制肺巨噬细胞吞噬功能的初步研究[J]. 南京医科大学学报(自然科学版),2021,41(9):1304-1309.
[22]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet,2009,43(11):67-93.
[23]
Bressan C, Saghatelyan A. AMPK-induced autophagyas a key regulator of cell migration[J]. Autophagy,2021,17(3):828-829.
[24]
Wan G, Xie W, Liu Z, et al. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway[J]. Autophagy,2014,10(1):70-79.
[25]
Ferreira-Marques M, Carvalho A, Cavadas C, et al. PI3K/AKT/MTOR and ERK1/2-MAPK signaling pathways are involved in autophagy stimulation induced by caloric restriction or caloric restriction mimetics in cortical neurons[J]. Aging (Albany NY),2021,13(6):7872-7882.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[6] 钟文涛, 赵阳, 沈晓菲, 杜峻峰. 自噬在脓毒症中的作用及靶向治疗研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 221-225.
[7] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[8] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[9] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[10] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[11] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[12] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[13] 神童, 申程, 甘立军. 囊泡在冠状动脉钙化过程中的作用[J]. 中华诊断学电子杂志, 2023, 11(01): 1-4.
[14] 李正达, 张艳兵, 刘茂霞, 李玉芳, 杨新静. 艾司洛尔对脓毒症肠损伤的保护作用及对自噬蛋白AMPK表达水平的影响[J]. 中华卫生应急电子杂志, 2023, 09(02): 90-95.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要