[1] |
Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments[J]. BMJ,2019,366:l4609.
|
[2] |
Hartley-Tassell LE, Awad MM, Seib KL, et al. Lectin activity of the TcdA and TcdB toxins of Clostridium difficile[J]. Infect Immun,2019,87(3):e00676-18.
|
[3] |
Seo MR, Kim J, Lee Y, et al. Prevalence, genetic relatedness and antibiotic resistance of hospital-acquired Clostridium difficile PCR ribotype 018 strains[J]. Int J Antimicrob Agents,2018,51(5):762-767.
|
[4] |
Freeman J, Bauer MP, Baines SD, et al. The changing epidemiology of Clostridium difficile infections[J]. Clin Microbiol Rev,2010,23(3):529-549.
|
[5] |
Aktories K, Papatheodorou P, Schwan C. Binary Clostridium difficile toxin (CDT)--A virulence factor disturbing the cytoskeleton[J]. Anaerobe,2018,53:21-29.
|
[6] |
熊号峰, 刘景院, 李兴旺. 重症艰难梭菌感染者诊治研究进展[J/CD]. 中华实验和临床感染病杂志(电子版),2015,9(5):37-40.
|
[7] |
李继霞, 公衍文, 武静, 等. 急性淋巴细胞白血病合并抗菌药物相关腹泻一例[J/CD]. 中华实验和临床感染病杂志(电子版),2018,12(6):617-620.
|
[8] |
Caputo A, Fournier PE, Raoult D. Genome and pan-genome analysis to classify emerging bacteria[J]. Biol Direct,2019,14(1):5.
|
[9] |
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods,2012,9(4):357-359..
|
[10] |
Seemann T. Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics,2014,30(14):2068-2069.
|
[11] |
Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis[J]. Bioinformatics,2015, 31(22):3691-3693.
|
[12] |
Janezic S, Potocnik M, Zidaric V, et al. Highly divergent Clostridium difficile strains isolated from the environment[J]. PLoS One,2016,11(11):e0167101.
|
[13] |
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, et al. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes[J]. J Microbiol Methods,2020,175:105974.
|
[14] |
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic resistances of Clostridium difficile[J]. Adv Exp Med Biol,2018,1050:137-159.
|
[15] |
Peng Z, Ling L, Stratton CW, et al. Advances in the diagnosis and treatment of Clostridium difficile infections[J]. Emerg Microbes Infect,2018,7(1):15.
|
[16] |
王丽, 所鸿. 艰难梭菌的耐药性及耐药机制研究进展[J]. 世界最新医学信息文摘,2019,19(20):97-99.
|
[17] |
Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance[J]. Protein Sci,2020,29(3):654-669.
|
[18] |
Monot M, Eckert C, Lemire A, et al. Clostridium difficile: New insights into the evolution of the pathogenicity locus[J]. Sci Rep,2015,5:15023.
|
[19] |
King AM, Mackin KE, Lyras D. Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations[J]. Future Microbiol,2015,10(1):1-4.
|
[20] |
Geric B, Carman RJ, Rupnik M, et al. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters[J]. J Infect Dis,2006,193(8):1143-1150.
|
[21] |
Janezic S, Dingle K, Alvin J, et al. Comparative genomics of toxinotypes identifies module-based toxin gene evolution[J]. Microb Genom,2020,6(10):mgen000449.
|
[22] |
Dingle KE, Griffiths D, Didelot X, et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity[J]. PLoS One,2011,6(5):e19993.
|
[23] |
Kuwata Y, Tanimoto S, Sawabe E, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan[J]. Eur J Clin Microbiol Infect Dis,2015,34(4):763-772.
|
[24] |
Klasson L, Andersson SGE. Evolution of minimal-gene-sets in host-dependent bacteria[J]. Trends Microbiol,2004,12(1):37-43.
|
[25] |
Elliott B, Dingle KE, Didelot X, et al. The complexity and diversity of the pathogenicity locus in Clostridium difficile clade 5[J]. Genome Biol Evol,2014,6(12):3159-3170.
|