切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.1674-1358.2021.03.001

综述

程序性死亡受体1/程序性死亡配体在结核分枝杆菌感染免疫中的作用和宿主导向治疗前景
张丽帆1, 杨峥蓉2, 刘晓清1,()   
  1. 1. 100730 北京,中国医学科学院北京协和医学院,北京协和医院,疑难重症及罕见病国家重点实验室,感染内科;100730 北京,中国医学科学院北京协和医学院,国际临床流行病学网,临床流行病学教研室;100730 北京,中国医学科学院北京协和医学院,结核病研究中心
    2. 100730 北京,中国医学科学院北京协和医学院,北京协和医院,疑难重症及罕见病国家重点实验室,感染内科
  • 收稿日期:2020-06-24 出版日期:2021-06-15
  • 通信作者: 刘晓清
  • 基金资助:
    艾滋病和病毒性肝炎等传染病科技重大专项课题(No. 2017ZX10201302); 中国医学科学院医学与健康科技创新工程项目(No. 2016-I2M-1-013、2019-I2M-2-005); 中国医学科学院北京协和医学院中央级公益性科研院所基本科研业务项目(No. 2017PT31010)

Immune role of programmed death 1/programmed death-ligand pathway in Mycobacterium tuberculosis infection and prospects for host-directed therapy

Lifan Zhang1, Zhengrong Yang2, Xiaoqing Liu1,()   

  1. 1. Division of Infectious Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Clinical Epidemiology Unit, International Epidemiology Network, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China; Centre for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
    2. Division of Infectious Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
  • Received:2020-06-24 Published:2021-06-15
  • Corresponding author: Xiaoqing Liu
引用本文:

张丽帆, 杨峥蓉, 刘晓清. 程序性死亡受体1/程序性死亡配体在结核分枝杆菌感染免疫中的作用和宿主导向治疗前景[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(03): 145-148.

Lifan Zhang, Zhengrong Yang, Xiaoqing Liu. Immune role of programmed death 1/programmed death-ligand pathway in Mycobacterium tuberculosis infection and prospects for host-directed therapy[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(03): 145-148.

程序性死亡受体1(PD-1)/程序性死亡配体(PD-L)信号转导通路作为近年来的研究热点,其对恶性肿瘤的显著疗效为慢性感染性疾病患者的治疗提供了新思路。但应用PD-1抑制剂治疗恶性肿瘤过程中,出现结核分枝杆菌感染再活动的个案报道呈增加趋势。结核病是由结核分枝杆菌(MTB)感染所致,是由单一致病菌致病导致死亡病例最多的疾病,严重危害人们的健康。潜伏性结核分枝杆菌感染(LTBI)是MTB在体内的稽留状态,LTBI在特定条件下可发展为活动性结核病(ATB)。我国在结核病的防控工作方面始终面临着严峻挑战。本文就PD-1/PD-L信号转导通路在MTB感染免疫中的作用进行综述,为深入理解MTB宿主免疫以及探索新的结核病宿主导向治疗(HDT)方案提供线索。

The programmed death 1 (PD-1)/programmed death-ligand (PD-L) pathway had been a research hotspot in recent years, and its significant clinical benefit in patients with malignant tumors had provided new ideas for the treatment of patients with chronic infectious diseases. Cases of Mycobacteria tuberculosis (MTB) infection reactivity during PD-1 inhibitor treatment of malignant tumors have now been reported in the literature, which have shown a tendency to increase. Tuberculosis, a communicable disease caused by MTB, was a disease which cause the most number of deaths by a single pathogen. Latent MTB infection (LTBI) was pragmatically defined as infection with MTB. Latent tuberculosis infection could progress to active tuberculosis (ATB) under specific conditions. The epidemic situation of tuberculosis has brought severe challenges to the prevention and control of tuberculosis in China. This review discussed the immune role of PD-1/PD-L pathway in MTB infection and provides clues for in-depth understanding of MTB host immunity and exploring new tuberculosis host-directed therapy.

表1 应用PD-1抑制剂的肿瘤患者发生活动性结核病的临床特点
参考文献 发表年份 性别 年龄 种族 肿瘤 药物 药物类型 确诊结核时间 诊断 结核部位 抗结核治疗方案 抗结核治疗结局
Byeon S等[4] 2020 57 亚洲 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗22周期 BAL 药物不详,共6个月 不详
61 亚洲 转移性非小细胞肺癌 帕博利珠单抗 PD-1抑制剂 治疗2周期 不详 药物不详,共6个月 不详
84 亚洲 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗4周期 不详 不详 不详
Anastasopoulou A等[5] 2019 76 高加索 转移性黑色素瘤 纳武利尤单抗 PD-1抑制剂 治疗14周期 BAL、PCR HRZE(1周) 死亡
Barber DL等[6] 2019 59 亚洲 转移性鼻咽癌 纳武利尤单抗 PD-1抑制剂 治疗3周期 组织学、BAL、痰PCR 播散性 1HRZE 死亡
83 高加索 默克尔细胞瘤 帕博利珠单抗 PD-1抑制剂 治疗11周期 组织学 HRZE→RO共9月 治愈
Tsai CC等[7] 2019 49 亚洲 硬腭鳞状细胞癌 纳武利尤单抗 PD-1抑制剂 治疗6周期 痰培养、抗酸染色 药物不详,共5个月 死亡
Takata S等[8] 2019 75 亚洲 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗15周期 痰涂片抗酸染色、PCR HRZE 10 d→HEO(不详)→7HR 治愈
Picchi H等[9] 2018 50 高加索 转移性黑色素瘤 帕博利珠单抗 PD-1抑制剂 治疗4周期 组织学、PPD 胸膜 HRZE (时间不详) 治愈
64 高加索 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗2周期 组织学、骨培养、PCR HRZE(时间不详) 死亡
Jensen KH等[10] 2018 56 高加索 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗12周期 组织学、PCR 不详 不详
He W等[11] 2018 65 亚洲 转移性黑色素瘤 帕博利珠单抗 PD-1抑制剂 治疗10周期 Xpert、BAL培养 2HRZE→4SEO 治愈
Chu YC等[12] 2017 59 亚洲 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗3周期 组织学、心包液培养 心包 不详 治愈
Fujita K等[13] 2016 72 亚洲 转移性非小细胞肺癌 纳武利尤单抗 PD-1抑制剂 治疗8周期 BAL培养、PCR,IGRA 不详 不详
Lee JJ等[14] 2016 87 亚洲 霍奇金淋巴瘤 纳武利尤单抗 PD-1抑制剂 治疗5周期 痰培养 HRE(时间不详) 治愈
[1]
World Health Organization. Global tuberculosis report 2016[EB/OL]. 2016.

URL    
[2]
李紫薇,杨东亮,刘嘉. 程序性死亡蛋白1靶向免疫治疗在慢性病毒性感染中的研究进展[J/CD]. 中华实验和临床感染病杂志(电子版),2020,14(5):361-366.
[3]
Rao M, Valentini D, Dodoo E, et al. Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm[J]. Int J Infect Dis,2017,56(3):221-228.
[4]
Byeon S, Cho JH, Jung HA, et al. PD-1 inhibitors for non-small cell lung cancer patients with special issues: Real-world evidence[J]. Cancer Med,2020,9(7):2352-2362.
[5]
Anastasopoulou A, Ziogas DC, Samarkos M, et al. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations[J]. J Immunother Cancer,2019,7(1):239-252.
[6]
Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy[J]. Sci Transl Med,2019, 11(475):53-61.
[7]
Tsai CC, Chen JH, Wang YC, et al. Re-activation of pulmonary tuberculosis during anti-programmed death-1 (PD-1) treatment[J]. QJM,2019,112(1):41-42.
[8]
Takata S, Koh G, Han Y, et al. Paradoxical response in a patient with non-small cell lung cancer who received nivolumab followed by anti-Mycobacterium tuberculosis agents[J]. J Infect Chemother,2019,25(1):54-58.
[9]
Picchi H, Mateus C, Chouaid C,et al. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment[J]. Clin Microbiol Infect,2018,24(3):216-218.
[10]
Jensen KH, Persson G, Bondgaard AL,et al. Development of pulmonary tuberculosis following treatment with anti-PD-1 for non-small cell lung cancer[J]. Acta Oncol,2018,57(8):1127-1128.
[11]
He W, Zhang X, Li W, et al. Activated pulmonary tuberculosis in a patient with melanoma during PD-1 inhibition: a case report[J]. Onco Targets Ther,2018,11(10):7423-7427.
[12]
Chu YC, Fang KC, Chen HC, et al. Pericardial tamponade caused by a hypersensitivity response to tuberculosis reactivation after anti-PD-1 treatment in a patient with advanced pulmonary adenocarcinoma[J]. J Thorac Oncol,2017,12(8):e111-e114.
[13]
Fujita K, Terashima T, Mio T. Anti-PD1 antibody treatment and the development of acute pulmonary tuberculosis[J]. J Thorac Oncol,2016,11(12):2238-2240.
[14]
Lee JJX, Chan A, Tang T. Tuberculosis reactivation in a patient receiving anti-programmed death-1 (PD-1) inhibitor for relapsed Hodgkin’s lymphoma[J]. Acta Oncologica,2016,55(4):519-520.
[15]
Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med,2016,375(18):1767-1778.
[16]
Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells[J]. Proc Natl Acad Sci USA,2003,100(9):5336-5341.
[17]
Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas[J]. Nat Rev Clin Oncol,2017,14(4): 203-220.
[18]
Day CL, Abrahams DA, Bunjun R, et al. PD-1 expression on Mycobacterium tuberculosis-specific CD4+ T cells is associated with bacterial load in human tuberculosis[J]. Front Immunol,2018,9(8): 1995-2013.
[19]
Shen L, Shi H, Gao Y, et al. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis[J]. Tuberculosis (Edinb),2016,101(6):146-150.
[20]
Cao S, Li J, Lu J, et al. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway[J]. Cell Death Dis,2019,10(2):44-56.
[21]
Mahon RN, Hafner R. Applying precision medicine and immunotherapy advances from oncology to host-directed therapies for infectious diseases[J]. Front Immunol,2017,8(6):688-794.
[22]
Singh A, Dey AB, Mohan A, et al. Programmed death-1 receptor suppresses gamma-IFN producing NKT cells in human tuberculosis[J]. Tuberculosis (Edinb),2014,94(3):197-206.
[23]
Zumla A, Rao M, Dodoo E, et al. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis[J]. BMC Med,2016,14(6):89-101.
[24]
Wallis RS, Hafner R. Advancing host-directed therapy for tuberculosis[J]. Nat Rev Immunol,2015,15(4):255-263.
[25]
Reungwetwattana T, Adjei AA. Anti-PD-1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis[J]. J Thorac Oncol,2016,11(12):2048-2050.
[26]
Kaufmann SH. How can immunology contribute to the control of tuberculosis?[J]. Nat Rev Immunol,2001,1(1):20-30.
[27]
Lazar-Molnar E, Chen B, Sweeney KA, et al. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis[J]. Proc Natl Acad Sci USA,2010,107(30):13402-13407.
[28]
Barber DL, Mayer-Barber KD, Feng CG, et al. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition[J]. J Immunol,2011,186(3):1598-1607.
[29]
Sakai S, Kauffman KD, Sallin MA, et al. CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease[J]. PLoS Pathog,2016,12(5):e1005667.
[30]
孙萌萌,秦川,唐军, 等. 阻断巨噬细胞介导的PD1/PD-L1通路对小鼠结核复发的抑制作用[J]. 中国比较医学杂志,2018,28(4):50-58.
[31]
Shen L, Gao Y, Liu Y, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4(+) T-cell functions and phagocytosis of macrophages in active tuberculosis[J]. Sci Rep,2016,6(1):38362-38371.
[32]
Singh A, Mohan A, Dey AB,et al. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon gamma-producing T cells from apoptosis in patients with pulmonary tuberculosis[J]. J Infect Dis,2013,208(4):603-615.

URL    
[33]
占玲俊,唐军,秦川. PD-1: PD-L1/PD-L2通路在结核感染中的免疫作用[J]. 中国比较医学杂志,2015,25(7):74-76.
[34]
Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation[J]. Nat Immunol,2001,2(3): 261-268.
[35]
Zhang Y, Chung Y, Bishop C, et al. Regulation of T cell activation and tolerance by PDL2[J]. Proc Natl Acad Sci USA,2006,103(31):11695-11700.
[36]
Karunarathne DS, Horne-Debets JM, Huang JX, et al. Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 axis is essential for establishing CD4(+) T cell immunity[J]. Immunity, 2016,45(2):333-345.
[1] 杨高怡. 超声在结核病诊疗中的应用[J]. 中华医学超声杂志(电子版), 2019, 16(01): 34-34.
[2] 毛敏杰, 汪彩红, 潘蕾, 徐节坤, 潘晓鸿, 邱君克, 黄晓庆. 尿胰蛋白酶抑制剂对重症结核病患者的免疫调节作用[J]. 中华危重症医学杂志(电子版), 2018, 11(06): 372-376.
[3] 马亚楠, 侍效春, 刘晓清. 系统性红斑狼疮合并活动性结核病研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 1-5.
[4] 金小琳, 杨智彬, 詹淑华, 朱丹, 何海英, 殷水泽, 马世武. 1 501例初治住院结核病患者肝功能异常的影响因素[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 394-400.
[5] 杨智彬, 申恩瑞, 潘丽, 赵丽惠, 王聪, 杨艳霞, 李阳, 王巧凤, 马世武. 不同临床类型结核病患者血清白细胞介素-21水平及其临床意义[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(01): 48-53.
[6] 艾亮, 成柯, 张盛. 再次肾移植术后并发移植后淋巴增殖性疾病伴结核病一例[J]. 中华移植杂志(电子版), 2022, 16(01): 46-48.
[7] 肖敏, 杨松, 陈杨, 李同心, 杨仕明, 林辉. 结核病患者中靶向调控维生素D受体的microRNA的初步筛选[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 731-736.
[8] 吴桂辉, 黄涛, 罗槑, 蔡阳, 任利红. 活动性肺结核患者病情严重程度与维生素D及T细胞亚群的相关性分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 510-512.
[9] 任成山, 林辉, 杨仕明. 结核病的流行特征与耐多药的窘迫及其策略[J]. 中华肺部疾病杂志(电子版), 2019, 12(03): 269-274.
[10] 冯英凯, 王勇, 黄正谷, 赵小莉, 刘英. 蛋白芯片技术与其他4种检测方法对结核病诊断价值的比较[J]. 中华肺部疾病杂志(电子版), 2017, 10(04): 427-430.
[11] 龚新记, 李月华, 姚丽丹, 阿依努尔·莫合买提, 刘年强, 王乐, 王晶. MLVA用于新疆部分地区结核分枝杆菌基因分型的初步研究[J]. 中华肺部疾病杂志(电子版), 2017, 10(03): 304-308.
[12] 颜文杰, 宋勇, 鲁燕云. 56例西藏地区肺结核的临床分析[J]. 中华肺部疾病杂志(电子版), 2017, 10(03): 328-329.
[13] 杨建功, 王继成, 黄兵, 何永康, 邵菊香, 尹艳霞. 活动性肺结核患者抗痨治疗前后PPD试验结果的分析[J]. 中华临床医师杂志(电子版), 2020, 14(10): 823-825.
[14] 樊茹, 刘红伟, 邱万, 李晓非. I-SPOT.TB与T-SPOT.TB试剂盒在结核病诊断中的应用价值及其诊断一致性分析[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 210-214.
[15] 宋言峥, 朱益军, 陈辉, 李洪伟, 王琳, 石磊, 万来忆, 李蕾蕾. 肺结核外科的微创伤疗法(附39例报告)[J]. 中华胸部外科电子杂志, 2020, 07(02): 71-75.
阅读次数
全文


摘要