切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 149 -157. doi: 10.3877/cma.j.issn.1674-1358.2021.03.002

论著

宏基因组测序技术分析原发性肝癌患者肠道菌群特征
郑微1, 赵鹏2, 张永宏2, 赵艳1,()   
  1. 1. 100069 北京,首都医科大学附属北京佑安医院临检中心
    2. 100069 北京,首都医科大学附属北京佑安医院肿瘤介入治疗中心
  • 收稿日期:2020-06-21 出版日期:2021-06-15
  • 通信作者: 赵艳
  • 基金资助:
    北京市医院管理局重点医学专业发展计划建设(No. ZYLX201711); 北京市医院管理局"登峰"人才培养计划(No. DFL20181701); 北京市自然科学基金(No. 7191004,No. 7202069); 北京市科学技术委员会(No. Z171100001017078); 首都卫生发展科研专项(No. 2020-2-1153,No. 2020-1-2182); 传染病相关疾病生物标志物北京市重点实验室(BZ0373)

Metagenomic analysis on characteristics of intestinal flora of patients with primary liver cancer

Wei Zheng1, Peng Zhao2, Yonghong Zhang2, Yan Zhao1,()   

  1. 1. Department of Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
    2. Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
  • Received:2020-06-21 Published:2021-06-15
  • Corresponding author: Yan Zhao
引用本文:

郑微, 赵鹏, 张永宏, 赵艳. 宏基因组测序技术分析原发性肝癌患者肠道菌群特征[J/OL]. 中华实验和临床感染病杂志(电子版), 2021, 15(03): 149-157.

Wei Zheng, Peng Zhao, Yonghong Zhang, Yan Zhao. Metagenomic analysis on characteristics of intestinal flora of patients with primary liver cancer[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(03): 149-157.

目的

宏基因组测序技术分析原发性肝癌患者肠道菌群的分布特征。

方法

收集2019年3月~6月于首都医科大学附属北京佑安医院就诊的10例原发性肝癌患者(原发性肝癌组)和10例健康体检(健康对照组)者的粪便标本并记录一般资料。行宏基因组测序并根据测序获得的数据利用主成分分析和多样性分析方法分析两组菌群的结构并比较物种丰度差异。采用Spearman相关分析法分析副血链球菌、唾液链球菌、变形链球菌、嗜热链球菌、副流感嗜血杆菌、韦荣球菌、殊异韦荣菌、艾克曼菌、嗜黏蛋白艾克曼菌、普雷沃菌、另枝菌的丰度与血清中丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、谷氨酰转肽酶(GGT)、总蛋白、总胆红素、甲胎蛋白(AFP)水平间的相关性。

结果

基于bray、jsd距离衡量的Beta多样性分析显示,原发性肝癌组患者粪便菌群多样性较健康对照组显著降低,差异有统计学意义(t = 5.402、P < 0.001,t = 5.248、P < 0.001)。属水平方面丰度最高为拟杆菌属,其次为普雷沃菌属,相对丰度分别为[34.94(11.76,56.02)]%和[11.99(1.29,27.82]%;物种水平方面丰度最高的分别为普通拟杆菌和普拉梭菌,相对丰度分别为[1.55(0.63,3.90]%和[1.54(0.53,2.84]%。在细菌分类学的种水平进行丰度比较,137种细菌在健康对照组和原发性肝癌组中的分布差异有统计学意义(P均< 0.05),原发性肝癌组患者副血链球菌、唾液链球菌、变形链球菌、嗜热链球菌、副流感嗜血杆菌、韦荣球菌、殊异韦荣菌丰度显著增加(P均< 0.05),而艾克曼菌、嗜黏蛋白艾克曼菌、普雷沃菌、另枝菌丰度显著降低(P均< 0.05)。相关性分析发现唾液链球菌(r = 0.733、P = 0.020)、嗜热链球菌(r = 0.867、P = 0.002)、副流感嗜血杆菌(r = 0.721、P = 0.023)与血清ALT水平呈显著正相关;嗜黏蛋白艾克曼菌与AST(r = 0.646、P = 0.049)、GGT(r = 0.762、P = 0.037)、总蛋白(r =-0.788、P = 0.010)有显著相关性。

结论

原发性肝癌患者的肠道菌群多样性显著降低,物种丰度发生改变,存在显著的肠道菌群失衡,肠道菌群中特定差异的细菌种类可能作为一种生物标志物用于原发性肝癌的早期诊断。

Objective

To investigate the distribution characteristics of intestinal flora of patients with primary liver cancer by metagenome sequencing.

Methods

Fecal samples of 10 patients with primary liver cancer (primary liver cancer group) and 10 healthy people (healty control group) were collected from March to June 2019 in Beijing Youan Hospital, Capital Medical University and the general clinical information was recorded. According to the metagenome sequencing data, principal component analysis and diversity analysis were used to analyze the flora structure and species differences of the two groups of bacteria were also compared. Spearman correlation analysis was used to analyze the correlation between the abundance of Streptococcus parahaemolyticus, Streptococcus salivarius, Streptococcus mutans, Streptococcus_thermophilus, Haemophilus_parainfluenzae, Veillonella_sp._DORA_A_3_16_22, Veillonella_dispar, Akkermansia_sp._CAG.344, Akkermansia_muciniphila_CAG.154, Prevotella_sp._CAG.924 and Alistipes_sp._CAG.268 and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl transpeptidase (GGT), total protein, total bilirubin and alpha fetoprotein (AFP).

Results

The analysis of beta diversity based on bray and jsd distance showed that the intestinal flora diversity of the two groups of subjects was statistically significant. The diversities of fecal flora in patients of primary liver cancer group were significantly lower than those of healthy control group, with significant differences (t = 5.402, P < 0.001; t = 5.248, P < 0.001). At genus level, the highest abundance was Bacteroides, followed by Prevotella, and the relative abundance were [34.94 (11.76, 56.02]% and [11.99 (1.29, 27.82]%, respectively; at species level, the highest abundance was Bacteroides vulgatus and Faecalibacterium prausnitzii, and the relative abundance were [1.55 (0.63, 3.90]% and [1.54 (0.53, 2.84]%, respectively. The abundance comparison at the species level of bacterial taxonomy showed that the distribution of 137 species in the healthy control group and the primary liver cancer group was statistically significant (all P < 0.05). In the primary liver cancer group, the abundance of Streptococcus_parasanguinis, Streptococcus_salivarius, Streptococcus_mutans, Streptococcus_thermophilus, Haemophilus_parainfluenzae, Veillonella_sp._DORA_A_3_16_22 and Veillonella_dispar were significantly increased, while the abundance of Akkermansia_sp._CAG.344, Akkermansia_muciniphila_CAG.154, Prevotella_sp._CAG.924 and Alistipes_sp._CAG.268 were significantly decreased. Correlation analysis found that Streptococcus_salivarius (r = 0.733, P = 0.020), Streptococcus_thermophilus (r = 0.867, P = 0.002) and Haemophilus_parainfluenzae (r = 0.721, P = 0.023) were significantly and positively correlated with serum ALT level. Akkermansia muciniphila was significantly correlated with serum AST (r = 0.646, P = 0.049), GGT (r = 0.762, P = 0.037) and total protein (r =-0.788, P = 0.010).

Conclusions

The diversity of intestinal flora in patients with primary liver cancer was significantly decreased, and the species abundance changed. There was a significant imbalance of intestinal flora. Specific differences in intestinal flora may be used as biomarkers for the early diagnosis of primary liver cancer.

表1 健康对照组和原发性肝癌组患者的一般资料
图1 健康对照组和原发性肝癌组患者粪便微生物群相似性变化
图2 健康对照组和原发性肝癌组患者粪便微生物群物种水平多样性变化
表2 健康对照组和原发性肝癌组患者肠道菌种相对丰度(‰)
图3 健康对照组和原发性肝癌组患者差异物种聚类分析
图4 原发性肝癌组患者粪便微生物物种丰度与临床指标间的Spearman相关性分析
[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin,2015,65(2):87-108.
[2]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet (London, England),2018,392(10159):1789-1858.
[3]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet (London, England), 2019,394(10204):1145-1158.
[4]
Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome [J]. Nat Rev Gastroenterol Hepatol,2018,15(7):397-411.
[5]
Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature [J]. Int J Mol Sci,2019,20(2):395.
[6]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版). 临床肝胆病杂志,2020,36(2):277-292.
[7]
Huson DH, Auch AF, Qi J, et al. MEGAN analysis of metagenomic data[J]. Genome Res,2007,17(3):377-386.
[8]
傅毅振,徐立. 肝细胞癌综合治疗进展[J]. 临床肝胆病杂志, 2020,36(10):2179-2183.
[9]
Gupta H, Youn GS, Shin MJ, et al. Role of gut microbiota in hepatocarcinogenesis[J]. Microorganisms,2019,7(5):121.
[10]
Gu W, Miller S, Chiu CY. Clinical Metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev of Pathol,2019,14:319-338.
[11]
Ohtani N, Kawada N. Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: A special focus on the gut microbiota relationship[J]. Hepatol Commun,2019,3(4):456-470.
[12]
Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation [J]. Nat Rev Gastroenterol Hepatol,2017,14(9):527-539.
[13]
Li J, Sung CY, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice[J]. Proc Nati Acad Sci USA,2016,113(9):E1306-E1315.
[14]
Cho EJ, Leem S, Kim SA, et al. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma[J]. Sci Rep,2019,9(1):7536.
[15]
Elshaer AM, El-Kharashi OA, Hamam GG, et al. Involvement of TLR4/CXCL9/PREX-2 pathway in the development of hepatocellular carcinoma (HCC) and the promising role of early administration of lactobacillus plantarum in Wistar rats[J]. Tissue Cell,2019,60:38-47.
[16]
Yu LX, Yan HX, Liu Q, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents[J]. Hepatology,2010,52(4):1322-1333.
[17]
Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE(2)-mediated suppression of antitumor immunity [J]. Cancer Discov,2017,7(5):522-538.
[18]
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature,2015,528(7581):262-266.
[19]
Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus[J]. Endocrinol Nutr,2016,63(10):560-568.
[20]
Vich Vila A, Imhann F, Collij V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome[J]. Sci Transl Med,2018,10(472):eaap8914.
[21]
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease [J]. Gut,2018,67(1):108-119.
[22]
Coker OO, Nakatsu G, Dai RZ, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer[J]. Gut,2019,68(4):654-662.
[23]
Mashima I, Nakazawa F. The influence of oral Veillonella species on biofilms formed by Streptococcus species[J]. Anaerobe,2014,28:54-61.

URL    
[24]
Derrien M, Belzer C, De Vos WM. Akkermansia muciniphila and its role in regulating host functions[J]. Microb Pathog,2017,106:171-181.
[25]
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nat Med,2017,23(1):107-113.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[4] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[5] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[6] 胡森焱, 徐冬, 方健, 谢冬冬, 王财庆. ICG荧光显影Laennec膜入路腹腔镜解剖性肝切除的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 513-516.
[7] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[8] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[9] 林英, 何洪, 杨琦, 姚兴伟, 马婧涵, 杨玉婷, 刘月红, 贾悦, 李长安. 联合宏基因组二代测序诊断普雷沃氏菌致肺脓肿1例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 625-629.
[10] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[11] 黄建玲, 王丽. 猪链球菌脑膜炎一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 187-189.
[12] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[15] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
阅读次数
全文


摘要