切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 149 -157. doi: 10.3877/cma.j.issn.1674-1358.2021.03.002

论著

宏基因组测序技术分析原发性肝癌患者肠道菌群特征
郑微1, 赵鹏2, 张永宏2, 赵艳1,()   
  1. 1. 100069 北京,首都医科大学附属北京佑安医院临检中心
    2. 100069 北京,首都医科大学附属北京佑安医院肿瘤介入治疗中心
  • 收稿日期:2020-06-21 出版日期:2021-06-15
  • 通信作者: 赵艳
  • 基金资助:
    北京市医院管理局重点医学专业发展计划建设(No. ZYLX201711); 北京市医院管理局"登峰"人才培养计划(No. DFL20181701); 北京市自然科学基金(No. 7191004,No. 7202069); 北京市科学技术委员会(No. Z171100001017078); 首都卫生发展科研专项(No. 2020-2-1153,No. 2020-1-2182); 传染病相关疾病生物标志物北京市重点实验室(BZ0373)

Metagenomic analysis on characteristics of intestinal flora of patients with primary liver cancer

Wei Zheng1, Peng Zhao2, Yonghong Zhang2, Yan Zhao1,()   

  1. 1. Department of Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
    2. Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
  • Received:2020-06-21 Published:2021-06-15
  • Corresponding author: Yan Zhao
引用本文:

郑微, 赵鹏, 张永宏, 赵艳. 宏基因组测序技术分析原发性肝癌患者肠道菌群特征[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(03): 149-157.

Wei Zheng, Peng Zhao, Yonghong Zhang, Yan Zhao. Metagenomic analysis on characteristics of intestinal flora of patients with primary liver cancer[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(03): 149-157.

目的

宏基因组测序技术分析原发性肝癌患者肠道菌群的分布特征。

方法

收集2019年3月~6月于首都医科大学附属北京佑安医院就诊的10例原发性肝癌患者(原发性肝癌组)和10例健康体检(健康对照组)者的粪便标本并记录一般资料。行宏基因组测序并根据测序获得的数据利用主成分分析和多样性分析方法分析两组菌群的结构并比较物种丰度差异。采用Spearman相关分析法分析副血链球菌、唾液链球菌、变形链球菌、嗜热链球菌、副流感嗜血杆菌、韦荣球菌、殊异韦荣菌、艾克曼菌、嗜黏蛋白艾克曼菌、普雷沃菌、另枝菌的丰度与血清中丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、谷氨酰转肽酶(GGT)、总蛋白、总胆红素、甲胎蛋白(AFP)水平间的相关性。

结果

基于bray、jsd距离衡量的Beta多样性分析显示,原发性肝癌组患者粪便菌群多样性较健康对照组显著降低,差异有统计学意义(t = 5.402、P < 0.001,t = 5.248、P < 0.001)。属水平方面丰度最高为拟杆菌属,其次为普雷沃菌属,相对丰度分别为[34.94(11.76,56.02)]%和[11.99(1.29,27.82]%;物种水平方面丰度最高的分别为普通拟杆菌和普拉梭菌,相对丰度分别为[1.55(0.63,3.90]%和[1.54(0.53,2.84]%。在细菌分类学的种水平进行丰度比较,137种细菌在健康对照组和原发性肝癌组中的分布差异有统计学意义(P均< 0.05),原发性肝癌组患者副血链球菌、唾液链球菌、变形链球菌、嗜热链球菌、副流感嗜血杆菌、韦荣球菌、殊异韦荣菌丰度显著增加(P均< 0.05),而艾克曼菌、嗜黏蛋白艾克曼菌、普雷沃菌、另枝菌丰度显著降低(P均< 0.05)。相关性分析发现唾液链球菌(r = 0.733、P = 0.020)、嗜热链球菌(r = 0.867、P = 0.002)、副流感嗜血杆菌(r = 0.721、P = 0.023)与血清ALT水平呈显著正相关;嗜黏蛋白艾克曼菌与AST(r = 0.646、P = 0.049)、GGT(r = 0.762、P = 0.037)、总蛋白(r =-0.788、P = 0.010)有显著相关性。

结论

原发性肝癌患者的肠道菌群多样性显著降低,物种丰度发生改变,存在显著的肠道菌群失衡,肠道菌群中特定差异的细菌种类可能作为一种生物标志物用于原发性肝癌的早期诊断。

Objective

To investigate the distribution characteristics of intestinal flora of patients with primary liver cancer by metagenome sequencing.

Methods

Fecal samples of 10 patients with primary liver cancer (primary liver cancer group) and 10 healthy people (healty control group) were collected from March to June 2019 in Beijing Youan Hospital, Capital Medical University and the general clinical information was recorded. According to the metagenome sequencing data, principal component analysis and diversity analysis were used to analyze the flora structure and species differences of the two groups of bacteria were also compared. Spearman correlation analysis was used to analyze the correlation between the abundance of Streptococcus parahaemolyticus, Streptococcus salivarius, Streptococcus mutans, Streptococcus_thermophilus, Haemophilus_parainfluenzae, Veillonella_sp._DORA_A_3_16_22, Veillonella_dispar, Akkermansia_sp._CAG.344, Akkermansia_muciniphila_CAG.154, Prevotella_sp._CAG.924 and Alistipes_sp._CAG.268 and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl transpeptidase (GGT), total protein, total bilirubin and alpha fetoprotein (AFP).

Results

The analysis of beta diversity based on bray and jsd distance showed that the intestinal flora diversity of the two groups of subjects was statistically significant. The diversities of fecal flora in patients of primary liver cancer group were significantly lower than those of healthy control group, with significant differences (t = 5.402, P < 0.001; t = 5.248, P < 0.001). At genus level, the highest abundance was Bacteroides, followed by Prevotella, and the relative abundance were [34.94 (11.76, 56.02]% and [11.99 (1.29, 27.82]%, respectively; at species level, the highest abundance was Bacteroides vulgatus and Faecalibacterium prausnitzii, and the relative abundance were [1.55 (0.63, 3.90]% and [1.54 (0.53, 2.84]%, respectively. The abundance comparison at the species level of bacterial taxonomy showed that the distribution of 137 species in the healthy control group and the primary liver cancer group was statistically significant (all P < 0.05). In the primary liver cancer group, the abundance of Streptococcus_parasanguinis, Streptococcus_salivarius, Streptococcus_mutans, Streptococcus_thermophilus, Haemophilus_parainfluenzae, Veillonella_sp._DORA_A_3_16_22 and Veillonella_dispar were significantly increased, while the abundance of Akkermansia_sp._CAG.344, Akkermansia_muciniphila_CAG.154, Prevotella_sp._CAG.924 and Alistipes_sp._CAG.268 were significantly decreased. Correlation analysis found that Streptococcus_salivarius (r = 0.733, P = 0.020), Streptococcus_thermophilus (r = 0.867, P = 0.002) and Haemophilus_parainfluenzae (r = 0.721, P = 0.023) were significantly and positively correlated with serum ALT level. Akkermansia muciniphila was significantly correlated with serum AST (r = 0.646, P = 0.049), GGT (r = 0.762, P = 0.037) and total protein (r =-0.788, P = 0.010).

Conclusions

The diversity of intestinal flora in patients with primary liver cancer was significantly decreased, and the species abundance changed. There was a significant imbalance of intestinal flora. Specific differences in intestinal flora may be used as biomarkers for the early diagnosis of primary liver cancer.

表1 健康对照组和原发性肝癌组患者的一般资料
图1 健康对照组和原发性肝癌组患者粪便微生物群相似性变化
图2 健康对照组和原发性肝癌组患者粪便微生物群物种水平多样性变化
表2 健康对照组和原发性肝癌组患者肠道菌种相对丰度(‰)
图3 健康对照组和原发性肝癌组患者差异物种聚类分析
图4 原发性肝癌组患者粪便微生物物种丰度与临床指标间的Spearman相关性分析
[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin,2015,65(2):87-108.
[2]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet (London, England),2018,392(10159):1789-1858.
[3]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet (London, England), 2019,394(10204):1145-1158.
[4]
Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome [J]. Nat Rev Gastroenterol Hepatol,2018,15(7):397-411.
[5]
Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature [J]. Int J Mol Sci,2019,20(2):395.
[6]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版). 临床肝胆病杂志,2020,36(2):277-292.
[7]
Huson DH, Auch AF, Qi J, et al. MEGAN analysis of metagenomic data[J]. Genome Res,2007,17(3):377-386.
[8]
傅毅振,徐立. 肝细胞癌综合治疗进展[J]. 临床肝胆病杂志, 2020,36(10):2179-2183.
[9]
Gupta H, Youn GS, Shin MJ, et al. Role of gut microbiota in hepatocarcinogenesis[J]. Microorganisms,2019,7(5):121.
[10]
Gu W, Miller S, Chiu CY. Clinical Metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev of Pathol,2019,14:319-338.
[11]
Ohtani N, Kawada N. Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: A special focus on the gut microbiota relationship[J]. Hepatol Commun,2019,3(4):456-470.
[12]
Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation [J]. Nat Rev Gastroenterol Hepatol,2017,14(9):527-539.
[13]
Li J, Sung CY, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice[J]. Proc Nati Acad Sci USA,2016,113(9):E1306-E1315.
[14]
Cho EJ, Leem S, Kim SA, et al. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma[J]. Sci Rep,2019,9(1):7536.
[15]
Elshaer AM, El-Kharashi OA, Hamam GG, et al. Involvement of TLR4/CXCL9/PREX-2 pathway in the development of hepatocellular carcinoma (HCC) and the promising role of early administration of lactobacillus plantarum in Wistar rats[J]. Tissue Cell,2019,60:38-47.
[16]
Yu LX, Yan HX, Liu Q, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents[J]. Hepatology,2010,52(4):1322-1333.
[17]
Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE(2)-mediated suppression of antitumor immunity [J]. Cancer Discov,2017,7(5):522-538.
[18]
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature,2015,528(7581):262-266.
[19]
Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus[J]. Endocrinol Nutr,2016,63(10):560-568.
[20]
Vich Vila A, Imhann F, Collij V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome[J]. Sci Transl Med,2018,10(472):eaap8914.
[21]
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease [J]. Gut,2018,67(1):108-119.
[22]
Coker OO, Nakatsu G, Dai RZ, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer[J]. Gut,2019,68(4):654-662.
[23]
Mashima I, Nakazawa F. The influence of oral Veillonella species on biofilms formed by Streptococcus species[J]. Anaerobe,2014,28:54-61.

URL    
[24]
Derrien M, Belzer C, De Vos WM. Akkermansia muciniphila and its role in regulating host functions[J]. Microb Pathog,2017,106:171-181.
[25]
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nat Med,2017,23(1):107-113.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[3] 董杰, 杨松, 杨浩, 陈翔, 张万里. 乙酰辅酶A羧化酶2基因高甲基化与肝细胞癌临床病理因素和生存期的关系[J]. 中华普通外科学文献(电子版), 2023, 17(06): 433-437.
[4] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[5] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[6] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[7] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[8] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[9] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[10] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[11] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要