切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 367 -373. doi: 10.3877/cma.j.issn.1674-1358.2020.05.003

所属专题: 文献

论著

基于全基因组序列的耐碳青霉烯鲍曼不动杆菌的耐药与毒力研究
刘鑫喆1, 滑明溪1, 王慧珠1, 杜鹏程1, 徐新民1, 熊号峰1, 李昂1, 陈晨1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院传染病研究所
  • 收稿日期:2019-11-06 出版日期:2020-10-20
  • 通信作者: 陈晨
  • 基金资助:
    北京市医管局扬帆计划重点医学专业(No. ZYLX201802); 政府间国际科技创新合作重点转型(No. 2018YEF0192500)

Whole-genome sequencing analysis on drug resistance and virulence genes of carbapenem-resistant Acinetobacter baumannii

Xinzhe Liu1, Mingxi Hua1, Huizhu Wang1, Pengcheng Du1, Xinmin Xu1, Haofeng Xiong1, Ang Li1, Chen Chen1,()   

  1. 1. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2019-11-06 Published:2020-10-20
  • Corresponding author: Chen Chen
引用本文:

刘鑫喆, 滑明溪, 王慧珠, 杜鹏程, 徐新民, 熊号峰, 李昂, 陈晨. 基于全基因组序列的耐碳青霉烯鲍曼不动杆菌的耐药与毒力研究[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 367-373.

Xinzhe Liu, Mingxi Hua, Huizhu Wang, Pengcheng Du, Xinmin Xu, Haofeng Xiong, Ang Li, Chen Chen. Whole-genome sequencing analysis on drug resistance and virulence genes of carbapenem-resistant Acinetobacter baumannii[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(05): 367-373.

目的

明确耐碳青霉烯类鲍曼不动杆菌(CRAB)临床主要流行株CC92克隆复合群(CC92)基因组中耐药基因和毒力基因的分布,并探讨CRAB耐药和毒力的分子特征。

方法

本研究共纳入2019年1~7月自首都医科大学附属北京地坛医院检验科分离的33株CRAB分离株,行细菌全基因组测序研究。利用CLC Genomics Workbench v10.0软件对全基因组测序数据进行序列的质量修整后,开展序列拼接、组装与注释,并进行耐药基因与毒力基因研究,分析CC92克隆复合群CRAB基因组中携带的耐药基因和毒力基因的分布。

结果

基因组测序数据分析表明,33株CRAB菌株中30株为CC92型克隆复合群(包括ST195、ST208、ST369和ST540),2株为ST229型,1株为国际上未报道新序列型别。以上CRAB中包括大量的耐药基因,包括大环内酯类、四环素和链霉素耐药基因在内的8~18个耐药基因,以及包括编码与侵袭和黏附等毒力功能相关的12种毒力基因。同时,本研究发现CC92克隆复合群,除携带碳青霉烯类耐药基因以外,还携带了其他非CC92克隆群不具备的耐药基因(如blaOXA-66和blaTEM-1D)和毒力基因(如bauA和bap基因)。此外,在CC92克隆复合群中可能存在大环内脂类耐药基因[msr(E)和mph(E)]、氨基糖苷类的耐药基因(armA)、链霉素耐药基因(strA、strB)与四环素耐药基因[tet(B)]的重组。

结论

CC92克隆复合群的CRAB基因组存在大量耐药基因和毒力基因,且存在耐药基因重组现象,迫切需要对CRAB进一步开展全基因组水平监测,为临床病原诊断和治疗提供必要的依据。

Objective

To definite the distribution and molecular characteristics of drug resistance genes and virulence genes in clonal complex 92 (CC92) which was a major epidemic strain of carbapenem-resistant Acinetobacter baumannii (CRAB).

Methods

Total of 33 strains of CRAB from different clinical samples during January to July, 2019 in Beijing Ditan Hospital, Capital Medical University were analyzed by whole genome sequencing analysis. The quality of the whole genome sequencing data were modified by CLC Genomics Workbench v10.0 software, then the sequence splicing, assembly and annotation were carried out, and the drug resistance genes and virulence genes were studied, and the distribution of the drug resistance genes and virulence genes carried by CRAB of the genome of the clone complex group were analyzed.

Results

The analysis of whole genome sequence of CRAB showed that among 33 strains of CRAB, 30 strains belonged to CC92, including ST195, ST208, ST369 and ST540. Two strains belonged to ST229, and the other one was identified as a new sequence type which had not been reported internationally. The analysis of the drug resistance genes showed the genome of these CRAB strains carried 8-18 drug resistance genes, covering carbapenem, macrolides, tetracycline, streptomycin resistance genes, etc and 12 kinds of virulence genes, which encoded adherence-related protein and invasion-related protein, etc. Meanwhile, the CC92 clone complex carried not only carbapenem resistance genes, but also other drug resistance genes (such as blaOXA-66 and blaTEM-1D) and virulence genes (such as bauA and bap) which cannot be found in non-CC92 clone complex. In addition, potential genetic integrations in macrolides [msr(E) and mph (E)], aminoglycoside (armA), streptomycin (strA, strB) and tetracycline [tet(B)] drug-resistance genes in CC92 genome were found.

Conclusions

CC92 carried a large number of drug-resistance genes and virulence genes, exhibited gene integration phenomenon which requires further investigation. An urgent need for clinical CRAB whole genomic surveillance should be carried out in order to provide the necessary basis for the diagnosis and treatment of clinical pathogens.

表1 33株鲍曼不动杆菌对抗菌药物的药敏试验(%)
图1 鲍曼不动杆菌分离株的耐药基因
表2 鲍曼不动杆菌分离株的耐药基因
图2 DT-AB083、DT-AB055、DT-AB077、DT-AB056、DT-AB081菌株中包含大环内酯类、氨基糖苷类、链霉素类和四环素耐药基因的基因组岛基因分布图
图3 CRAB鲍曼不动杆菌关键毒力基因在临床分离菌株中的分布
表3 鲍曼不动杆菌分离株的毒力基因
[1]
张银维. 鲍曼不动杆菌血流感染临床特征和死亡危险因素研究[D]. 浙江大学. 2016.
[2]
陈佰义,何礼贤,胡必杰, 等. 中国鲍曼不动杆菌感染诊治与防控专家共识[J]. 中国医药科学,2012,2(8):13-18.
[3]
Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen[J]. Clin Microbiol Rev,2008,21(3):538-582.
[4]
Vijayakumar S, Mathur P, Kapil A, et al. Molecular characterization & epidemiology of carbapenem-resistant Acinetobacter baumannii collected across India[J]. Indian J Med Res,2019,149(2):240-246.
[5]
王金良. 密切注视鲍曼不动杆菌的耐药发展趋势[J]. 中华检验医学杂志,2005,28(4):355-356.
[6]
Correa A, Del Campo R, Escandón-Vargas K, et al. Distinct genetic diversity of carbapenem-resistant Acinetobacter baumannii from Colombian hospitals[J]. Microb Drug Resist,2017,24(1):48-54.
[7]
杨均均,黄文祥,史芳静, 等. 耐碳青霉烯鲍曼不动杆菌流行特征及耐药基因分析[J]. 中国抗生素杂志,2012,37(5):343-347.
[8]
Wong D, Nielsen TB, Bonomo RA, et al. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges[J]. Clin Microbiol Rev,2017,30(1):409-447.
[9]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-fourth informational supplement[S]. CLSI document, approved standard M100-S24. Wayne (PA): The Institute; 2014.
[10]
Bartual SG, Seifert H, Hippler C, et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii[J]. J Clin Microbiol,2005,43(9):4382-4390.
[11]
凌保东. 鲍曼不动杆菌抗生素多重耐药性:耐药机制与感染治疗对策[J]. 中国抗生素杂志,2010,35(4):241-254.
[12]
Aly MM, Abu Alsoud NM, Elrobh MS, et al. High prevalence of the PER-1 gene among carbapenem-resistant Acinetobacter baumanniiin Riyadh, Saudi Arabia[J]. Eur J Clin Microbiol,2016,35(11):1759-1766.
[13]
Biglari S, Hanafiah A, Mohd Puzi S, et al. Antimicrobial resistance mechanisms and genetic diversity of multidrug-resistant Acinetobacter baumannii isolated from a teaching hospital in Malaysia[J]. Microb Drug Resist,2017,23(5):545-555.
[14]
Lee CR, Lee JH, Park KS, et al. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review[J]. Front Microbiol,2015,6:828.
[15]
Liu Y, Liu X. Detection of AmpC β-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance[J]. Exp Ther Med,2015,10(3):933-936.
[16]
Corvec S, Poirel L, Naas T, et al. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii[J]. Antmicrob Agents Ch,2007,51(4):1530-1533.
[17]
Nigro SJ, Hall RM. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene[J]. J Antimicrob Chemoth,2016,71(5):1135-1147.
[18]
Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii[J]. PLoS Genet,2006,2(1):62-72.
[19]
姜旻,孟现民,赵赟. 浅析近十年我国鲍曼不动杆菌检出率和耐药性变化[J]. 世界临床药物,2016,37(4):254-257.
[20]
Smani Y, Fàbrega A, Roca I, et al. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii[J]. Antmicrob Agents Ch,2014,58(3):1806-1808.
[21]
李志涛,张扣兴. 鲍曼不动杆菌的致病力毒力因素[J]. 中国抗生素杂志,2014,39(8):566-570.
[22]
McConnell M J, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models[J]. Fems Microbiol Rev,2013,37(2):130-155.
[23]
Vila-Farrés X, Ferrer-Navarro M, Callarisa AE, et al. Loss of LPS is involved in the virulence and resistance to colistin of colistin-resistant Acinetobacter nosocomialis mutants selected in vitro[J]. J Antimicrob Chemoth,2015,70(11):2981-2986.
[24]
Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nat Rev Microbiol,2018,16(2):91.
[25]
Ali HM, Salem MZM, El-Shikh MS, et al. Investigation of the virulence factors and molecular characterization of the clonal relations of multidrug-resistant Acinetobacter baumannii isolates[J]. J Aoac Int,2017,100(1):152-158.
[26]
Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Front Cell Infect Microbiol,2017,7:55.
[27]
马晓春,代军,徐磊, 等. 鲍曼不动杆菌生物膜形成机制研究进展[J]. 中国感染与化疗杂志,2018,18(1):124-128.
[28]
Gaddy JA, Arivett BA, McConnell MJ, et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice[J]. Infect Immun,2012,80(3):1015-1024.
[29]
Penwell WF, Arivett BA, Actis LA. The Acinetobacter baumannii entA gene located outside the Acinetobactin cluster is critical for siderophore production, iron acquisition and virulence[J]. PLoS One,2012,7(5):e36493.
[30]
Parsek MR, Fuqua C. Biofilms 2003: Emerging themes and challenges in studies of surface-associated microbial life[J]. J Bacteriol, 2004,186(14):4427-4440.
[1] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[4] 张小曼, 马筱秋, 许正锯, 张纯瑜, 何彩婷. 乙型肝炎病毒逆转录酶区耐药突变对血清乙型肝炎病毒表面抗原水平的影响[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 324-332.
[5] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[6] 李梦声, 韩中博. 胃癌的高危可控因素——幽门螺杆菌感染[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 145-150.
[7] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[8] 刘付有欢, 吴秀芹, 邓翠婷, 苏青. 基于模型的西妥昔单抗治疗胃癌细胞系的反应和耐药因素分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 385-388.
[9] 王晓丹, 王媛, 崔向宇, 任晓磊. 上尿路结石内镜手术后尿源性脓毒血症病原菌耐药及死亡高危因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 611-615.
[10] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[11] 卞天丹, 宋爽, 陶臻. 高毒力肺炎克雷伯菌分子学机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 438-441.
[12] 王甜甜, 温媛, 李振, 叶美红, 郭影, 马双. 和厚朴酚调控Nrf2/ARE通路对胃癌细胞的顺铂化疗敏感性的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 202-209.
[13] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144,150.
阅读次数
全文


摘要