切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 361 -366. doi: 10.3877/cma.j.issn.1674-1358.2020.05.002

所属专题: 文献

综述

程序性死亡蛋白1靶向免疫治疗在慢性病毒性感染中的研究进展
李紫薇1, 杨东亮1, 刘嘉1,()   
  1. 1. 430022 武汉市,华中科技大学同济医学院附属协和医院感染科
  • 收稿日期:2019-11-21 出版日期:2020-10-20
  • 通信作者: 刘嘉
  • 基金资助:
    国家自然科学基金资助项目(No.81861138044,No.91642118,No.91742114); 国家科技重大专项资助项目(2017ZX10202203, 2017ZX10202202, 2017ZX10202201)

Progress on anti-programmed cell death protein-1 immunotherapy for chronic virus infection

Ziwei Li1, Dongliang Yang1, Jia Liu1,()   

  1. 1. Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2019-11-21 Published:2020-10-20
  • Corresponding author: Jia Liu
引用本文:

李紫薇, 杨东亮, 刘嘉. 程序性死亡蛋白1靶向免疫治疗在慢性病毒性感染中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 361-366.

Ziwei Li, Dongliang Yang, Jia Liu. Progress on anti-programmed cell death protein-1 immunotherapy for chronic virus infection[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(05): 361-366.

在慢性病毒性感染的发生发展过程中,免疫系统一直起着举足轻重的作用。一方面,免疫系统通过免疫细胞、免疫分子等发挥正向的积极抗感染作用;另一方面,机体通过免疫负调控机制,发挥免疫抑制作用,以防止免疫系统的过度活化。而慢性病毒性感染中,免疫抑制作用过强则会阻碍机体正常抗感染效应的发挥。本综述就该过程中免疫抑制分子程序性死亡蛋白1(PD-1)及其配体PD-L1在其中发挥的作用并对靶向于PD-1/PD-L1的免疫治疗进展进行综述。

Immune system plays a pivotal role in disease development during chronic virus infection. On one hand, the immune system defends against infectious agents through effector immune cells and molecules. On the other hand, the immune system has negative immune regulation mechanisms to suppress immune response and prevent its overactivation. However, these mechanisms may oversuppress and hamper the generation of effective antiviral immune responses during chronic viral infection. In this review, the function of immunosuppressive molecules programmed cell death protein-1 (PD-1) and its ligand PD-L1 during chronic viral infections were discussed, and recent advances in immune therapies targeting these molecules were summarized.

表1 PD-1靶向治疗对慢性病毒性感染影响
[1]
Moreno-Cubero E, del Arco RTS, Pena-Asensio J, et al. Is it possible to stop nucleos(t)ide analogue treatment in chronic hepatitis B patients?[J]. World J Gastroenterol,2018,24(17):1825-1838.
[2]
WHO. Global hepatitis report 2017:1-83.

URL    
[3]
Collaborators GH. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017[J]. Lancet HIV,2019,6(12):e831-e859.
[4]
Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J,1992,11(11):3887-3895.
[5]
Dermani FK, Samadi P, Rahmani G, et al. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy[J]. J Cell Physiol, 2019,234(2):1313-1325.
[6]
Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation[J]. J Immunol,2004,173(2):945-954.
[7]
Dai S, Jia R, Zhang X, et al. The PD-1/PD-Ls pathway and autoimmune diseases[J]. Cell Immunol,2014,290(1):72-79.
[8]
Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1[J]. Immunity,2004,20(3):337-347.
[9]
Saresella M, Rainone V, Al-Daghri NM, et al. The PD-1/PD-L1 pathway in human pathology[J]. Curr Mol Med,2012,12(3):259-267.
[10]
Shinohara T, Taniwaki M, Ishida Y, et al. Structure and chromosomal localization of the human PD-1 gene (PDCD1)[J]. Genomics,1994,23(3):704-706.
[11]
Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity[J]. Autoimmun Rev,2013,12(11):1091-1100.
[12]
Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion[J]. Nat Med,1999,5(12):1365-1369.
[13]
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol,2008,26:677-704.
[14]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer,2012,12(4):252-264.
[15]
Hebeisen M, Baitsch L, Presotto D, et al. SHP-1 phosphatase activity counteracts increased T cell receptor affinity[J]. J Clin Invest,2013,123(3): 1044-1056.
[16]
Chikuma S, Terawaki S, Hayashi T, et al. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo[J]. J Immunol,2009,182(11):6682-6689.
[17]
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2[J]. J Exp Med,2012,209(6):1201-1217.
[18]
Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity[J]. Curr Top Microbiol Immunol,2011,350:17-37.
[19]
Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol,2016,34:539- 573.
[20]
Wherry EJ. T cell exhaustion[J]. Nat Immunol,2011,12(6):492- 499.
[21]
Buermann A, Romermann D, Baars W, et al. Inhibition of B-cell activation and antibody production by triggering inhibitory signals via the PD-1/PD-ligand pathway[J]. Xenotransplantation,2016,23(5):347- 356.
[22]
Bengsch B, Martin B, Thimme R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation[J]. J Hepatol,2014,61(6):1212-1219.
[23]
Raziorrouh B, Heeg M, Kurktschiev P, et al. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules[J]. PLoS One,2014,9(8):e105703.
[24]
Huang ZY, Xu P, Li JH, et al. Clinical significance of dynamics of programmed death ligand-1 expression on circulating CD14(+) monocytes and CD19(+) B cells with the progression of hepatitis B virus infection[J]. Viral Immunol,2017,30(3):224-231.
[25]
Salimzadeh L, Le Bert N, Dutertre CA, et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection[J]. J Clin Invest,2018,128(10):4573-4587.
[26]
Zhang Z, Zhang JY, Wherry EJ, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B[J]. Gastroenterology,2008,134(7):1938-1949, e1-3.
[27]
Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection[J]. J Virol,2007,81(8):4215-4225.
[28]
Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B[J]. Gastroenterology,2010,138(2):682-693, e1-4.
[29]
Burton AR, Pallett LJ, McCoy LE, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B[J]. J Clin Invest,2018,128(10):4588-4603.
[30]
Zhang E, Zhang X, Liu J, et al. The expression of PD-1 ligands and their involvement in regulation of T cell functions in acute and chronic woodchuck hepatitis virus infection[J]. PLoS One,2011,6(10):e26196.
[31]
Liu J, Zhang E, Ma Z, et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection[J]. PLoS Pathog,2014,10(1):e1003856.
[32]
Gane E, Gaggar A, Nguyen A H, et al. A phase1 study evaluating anti-PD-1 treatment with or without GS-4774 in HBeAg negative chronic hepatitis B patients[J]. J Hepatol,2017,66(1):S26-S27.
[33]
Gane E, Verdon DJ, Brooks AE, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study[J]. J Hepatol,2019,71(5):900-907.
[34]
Barathan M, Mohamed R, Vadivelu J, et al. CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides[J]. Cell Immunol,2017,313:1-9.
[35]
Cho H, Kang H, Lee HH, et al. Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) in viral hepatitis[J]. Int J Mol Sci,2017,18(7):1517.
[36]
Wang W, Tong Z, Zhong J, et al. Identification of IL-10-secreting CD8(+)CD28(-)PD-1(+) regulatory T cells associated with chronic hepatitis C virus infection[J]. Immunol Lett,2018,202:16-22.
[37]
Ojiro K, Qu X, Cho H, et al. Modulation of hepatitis C virus-specific CD8 effector T-cell function with antiviral effect in infectious hepatitis C virus coculture model[J]. J Virol,2017,91(10):e02129-16.
[38]
Fuller MJ, Callendret B, Zhu B, et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1) [J]. Proc Natl Acad Sci USA,2013,110(37):15001-15006.
[39]
Nakamoto N, Cho H, Shaked A, et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade[J]. PLoS Pathog,2009,5(2):e1000313.
[40]
Gardiner D, Lalezari J, Lawitz E, et al. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection[J]. PLoS One,2013,8(5):e63818.
[41]
Cox MA, Nechanitzky R and Mak TW. Check point inhibitors as therapies for infectious diseases[J]. Curr Opin Immunol,2017,48:61- 67.
[42]
Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction[J]. Nat Med,2006,12(10):1198-1202.
[43]
Chew GM, Fujita T, Webb GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection[J]. PLoS Pathog,2016,12(1):e1005349.
[44]
Ghiglione Y, Trifone C, Salido J, et al. PD-1 expression in HIV-specific CD8+ T-cells prior to antiretroviral therapy is associated with HIV persistence[J]. J Acquir Immune Defic Syndr,2018,80(1):1-6.
[45]
Hoang TN, Harper JL, Pino MC, et al. Bone marrow-derived CD4(+) T cells are depleted in SIV-infected macaques and contribute to the size of the replication competent reservoir on ART[J]. J Virol,2018,93(1):e01344-18.
[46]
Leon-Flores A, Del Rio Estrada PM, Alvarez-Garcia LX, et al. Increased levels of soluble co-stimulatory molecule PD-L1 (B7-H1) in the plasma of viraemic HIV-1(+) individuals[J]. Immunol Lett,2018,203:70-79.
[47]
Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression[J]. Nature,2006,443(7109):350-354.
[48]
Petrovas C, Casazza JP, Brenchley JM, et al. PD-1 is a regulator of virus-specific CD8(+) T cell survival in HIV infection[J]. J Exp Med,2006,203(10):2281-2292.
[49]
Mylvaganam GH, Chea LS, Tharp GK, et al. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV[J]. JCI Insight,2018,3(18):e122940.
[50]
Gill AL, Green SA, Abdullah S, et al. Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-programed death-ligand 1 (Avelumab)[J]. AIDS,2016,30(16):2487-2493.
[51]
Grabmeier-Pfistershammer K, Stecher C, Zettl M, et al. Antibodies targeting BTLA or TIM-3 enhance HIV-1 specific T cell responses in combination with PD-1 blockade[J]. Clin Immunol,2017,183:167-173.
[52]
Plachouri KM, Vryzaki E, Georgiou S. Cutaneous adverse eents of immune checkpoint inhibitors: A summarized overview[J]. Curr Drug Saf,2019,14(1):14-20.
[53]
Tanios GE, Doley PB, Munker R. Autoimmune hemolytic anemia associated with the use of immune checkpoint inhibitors for cancer: 68 cases from the FDA database and review[J]. Eur J Haematol,2019,102(2):157-162.
[54]
Nishino M, Ramaiya NH, Awad MM, et al. PD-1 Inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course[J]. Clin Cancer Res,2016,22(24):6051-6060.
[55]
Widmann G, Nguyen VA, Plaickner J, et al. Imaging features of toxicities by immune checkpoint inhibitors in cancer therapy[J]. Curr Radiol Rep,2016,5(11):59.
[56]
Winer A, Bodor JN, Borghaei H. Identifying and managing the adverse effects of immune checkpoint blockade[J]. J Thorac Dis,2018,10(Suppl 3):S480-S489.
[57]
Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors[J]. Cancer Treat Rev,2016,44:51-60.
[58]
Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group[J]. J Immunother Cancer,2017,5(1):95.
[59]
Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens A systematic review and Meta-analysis[J]. JAMA Oncol,2018,4(2):173-182.
[60]
Hughes J, Vudattu N, Sznol M, et al. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy[J]. Diabetes Care,2015,38(4):e55-e57.
[61]
Spain L, Walls G, Julve M, et al. Neurotoxicity from immune-checkpoint inhibition in the treatment of melanoma: a single centre experience and review of the literature[J]. Ann Oncol,2017,28(2):377-385.
[62]
Williams TJ, Benavides DR, Patrice KA, et al. Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer[J]. JAMA Neurol,2016,73(8):928-933.
[1] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[2] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[3] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[4] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[5] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[6] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[7] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[8] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[9] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[10] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[11] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[12] 张燕, 许丁伟, 胡满琴, 李新成, 李翱, 黄洁. 胆囊癌免疫治疗的知识图谱可视化分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 319-327.
[13] 王龙, 武帅, 王炳智, 郑波, 李文斌, 邹霜梅. 结直肠印戒细胞癌的临床病理特征研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 229-235.
[14] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
[15] 吴迪, 闫志风, 李明霞, 孟元光. 晚期子宫内膜癌免疫治疗的探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 231-237.
阅读次数
全文


摘要