切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 361 -366. doi: 10.3877/cma.j.issn.1674-1358.2020.05.002

所属专题: 文献

综述

程序性死亡蛋白1靶向免疫治疗在慢性病毒性感染中的研究进展
李紫薇1, 杨东亮1, 刘嘉1,()   
  1. 1. 430022 武汉市,华中科技大学同济医学院附属协和医院感染科
  • 收稿日期:2019-11-21 出版日期:2020-10-20
  • 通信作者: 刘嘉
  • 基金资助:
    国家自然科学基金资助项目(No.81861138044,No.91642118,No.91742114); 国家科技重大专项资助项目(2017ZX10202203, 2017ZX10202202, 2017ZX10202201)

Progress on anti-programmed cell death protein-1 immunotherapy for chronic virus infection

Ziwei Li1, Dongliang Yang1, Jia Liu1,()   

  1. 1. Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2019-11-21 Published:2020-10-20
  • Corresponding author: Jia Liu
引用本文:

李紫薇, 杨东亮, 刘嘉. 程序性死亡蛋白1靶向免疫治疗在慢性病毒性感染中的研究进展[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 361-366.

Ziwei Li, Dongliang Yang, Jia Liu. Progress on anti-programmed cell death protein-1 immunotherapy for chronic virus infection[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(05): 361-366.

在慢性病毒性感染的发生发展过程中,免疫系统一直起着举足轻重的作用。一方面,免疫系统通过免疫细胞、免疫分子等发挥正向的积极抗感染作用;另一方面,机体通过免疫负调控机制,发挥免疫抑制作用,以防止免疫系统的过度活化。而慢性病毒性感染中,免疫抑制作用过强则会阻碍机体正常抗感染效应的发挥。本综述就该过程中免疫抑制分子程序性死亡蛋白1(PD-1)及其配体PD-L1在其中发挥的作用并对靶向于PD-1/PD-L1的免疫治疗进展进行综述。

Immune system plays a pivotal role in disease development during chronic virus infection. On one hand, the immune system defends against infectious agents through effector immune cells and molecules. On the other hand, the immune system has negative immune regulation mechanisms to suppress immune response and prevent its overactivation. However, these mechanisms may oversuppress and hamper the generation of effective antiviral immune responses during chronic viral infection. In this review, the function of immunosuppressive molecules programmed cell death protein-1 (PD-1) and its ligand PD-L1 during chronic viral infections were discussed, and recent advances in immune therapies targeting these molecules were summarized.

表1 PD-1靶向治疗对慢性病毒性感染影响
[1]
Moreno-Cubero E, del Arco RTS, Pena-Asensio J, et al. Is it possible to stop nucleos(t)ide analogue treatment in chronic hepatitis B patients?[J]. World J Gastroenterol,2018,24(17):1825-1838.
[2]
WHO. Global hepatitis report 2017:1-83.

URL    
[3]
Collaborators GH. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017[J]. Lancet HIV,2019,6(12):e831-e859.
[4]
Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J,1992,11(11):3887-3895.
[5]
Dermani FK, Samadi P, Rahmani G, et al. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy[J]. J Cell Physiol, 2019,234(2):1313-1325.
[6]
Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation[J]. J Immunol,2004,173(2):945-954.
[7]
Dai S, Jia R, Zhang X, et al. The PD-1/PD-Ls pathway and autoimmune diseases[J]. Cell Immunol,2014,290(1):72-79.
[8]
Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1[J]. Immunity,2004,20(3):337-347.
[9]
Saresella M, Rainone V, Al-Daghri NM, et al. The PD-1/PD-L1 pathway in human pathology[J]. Curr Mol Med,2012,12(3):259-267.
[10]
Shinohara T, Taniwaki M, Ishida Y, et al. Structure and chromosomal localization of the human PD-1 gene (PDCD1)[J]. Genomics,1994,23(3):704-706.
[11]
Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity[J]. Autoimmun Rev,2013,12(11):1091-1100.
[12]
Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion[J]. Nat Med,1999,5(12):1365-1369.
[13]
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol,2008,26:677-704.
[14]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer,2012,12(4):252-264.
[15]
Hebeisen M, Baitsch L, Presotto D, et al. SHP-1 phosphatase activity counteracts increased T cell receptor affinity[J]. J Clin Invest,2013,123(3): 1044-1056.
[16]
Chikuma S, Terawaki S, Hayashi T, et al. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo[J]. J Immunol,2009,182(11):6682-6689.
[17]
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2[J]. J Exp Med,2012,209(6):1201-1217.
[18]
Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity[J]. Curr Top Microbiol Immunol,2011,350:17-37.
[19]
Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol,2016,34:539- 573.
[20]
Wherry EJ. T cell exhaustion[J]. Nat Immunol,2011,12(6):492- 499.
[21]
Buermann A, Romermann D, Baars W, et al. Inhibition of B-cell activation and antibody production by triggering inhibitory signals via the PD-1/PD-ligand pathway[J]. Xenotransplantation,2016,23(5):347- 356.
[22]
Bengsch B, Martin B, Thimme R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation[J]. J Hepatol,2014,61(6):1212-1219.
[23]
Raziorrouh B, Heeg M, Kurktschiev P, et al. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules[J]. PLoS One,2014,9(8):e105703.
[24]
Huang ZY, Xu P, Li JH, et al. Clinical significance of dynamics of programmed death ligand-1 expression on circulating CD14(+) monocytes and CD19(+) B cells with the progression of hepatitis B virus infection[J]. Viral Immunol,2017,30(3):224-231.
[25]
Salimzadeh L, Le Bert N, Dutertre CA, et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection[J]. J Clin Invest,2018,128(10):4573-4587.
[26]
Zhang Z, Zhang JY, Wherry EJ, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B[J]. Gastroenterology,2008,134(7):1938-1949, e1-3.
[27]
Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection[J]. J Virol,2007,81(8):4215-4225.
[28]
Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B[J]. Gastroenterology,2010,138(2):682-693, e1-4.
[29]
Burton AR, Pallett LJ, McCoy LE, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B[J]. J Clin Invest,2018,128(10):4588-4603.
[30]
Zhang E, Zhang X, Liu J, et al. The expression of PD-1 ligands and their involvement in regulation of T cell functions in acute and chronic woodchuck hepatitis virus infection[J]. PLoS One,2011,6(10):e26196.
[31]
Liu J, Zhang E, Ma Z, et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection[J]. PLoS Pathog,2014,10(1):e1003856.
[32]
Gane E, Gaggar A, Nguyen A H, et al. A phase1 study evaluating anti-PD-1 treatment with or without GS-4774 in HBeAg negative chronic hepatitis B patients[J]. J Hepatol,2017,66(1):S26-S27.
[33]
Gane E, Verdon DJ, Brooks AE, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study[J]. J Hepatol,2019,71(5):900-907.
[34]
Barathan M, Mohamed R, Vadivelu J, et al. CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides[J]. Cell Immunol,2017,313:1-9.
[35]
Cho H, Kang H, Lee HH, et al. Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) in viral hepatitis[J]. Int J Mol Sci,2017,18(7):1517.
[36]
Wang W, Tong Z, Zhong J, et al. Identification of IL-10-secreting CD8(+)CD28(-)PD-1(+) regulatory T cells associated with chronic hepatitis C virus infection[J]. Immunol Lett,2018,202:16-22.
[37]
Ojiro K, Qu X, Cho H, et al. Modulation of hepatitis C virus-specific CD8 effector T-cell function with antiviral effect in infectious hepatitis C virus coculture model[J]. J Virol,2017,91(10):e02129-16.
[38]
Fuller MJ, Callendret B, Zhu B, et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1) [J]. Proc Natl Acad Sci USA,2013,110(37):15001-15006.
[39]
Nakamoto N, Cho H, Shaked A, et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade[J]. PLoS Pathog,2009,5(2):e1000313.
[40]
Gardiner D, Lalezari J, Lawitz E, et al. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection[J]. PLoS One,2013,8(5):e63818.
[41]
Cox MA, Nechanitzky R and Mak TW. Check point inhibitors as therapies for infectious diseases[J]. Curr Opin Immunol,2017,48:61- 67.
[42]
Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction[J]. Nat Med,2006,12(10):1198-1202.
[43]
Chew GM, Fujita T, Webb GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection[J]. PLoS Pathog,2016,12(1):e1005349.
[44]
Ghiglione Y, Trifone C, Salido J, et al. PD-1 expression in HIV-specific CD8+ T-cells prior to antiretroviral therapy is associated with HIV persistence[J]. J Acquir Immune Defic Syndr,2018,80(1):1-6.
[45]
Hoang TN, Harper JL, Pino MC, et al. Bone marrow-derived CD4(+) T cells are depleted in SIV-infected macaques and contribute to the size of the replication competent reservoir on ART[J]. J Virol,2018,93(1):e01344-18.
[46]
Leon-Flores A, Del Rio Estrada PM, Alvarez-Garcia LX, et al. Increased levels of soluble co-stimulatory molecule PD-L1 (B7-H1) in the plasma of viraemic HIV-1(+) individuals[J]. Immunol Lett,2018,203:70-79.
[47]
Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression[J]. Nature,2006,443(7109):350-354.
[48]
Petrovas C, Casazza JP, Brenchley JM, et al. PD-1 is a regulator of virus-specific CD8(+) T cell survival in HIV infection[J]. J Exp Med,2006,203(10):2281-2292.
[49]
Mylvaganam GH, Chea LS, Tharp GK, et al. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV[J]. JCI Insight,2018,3(18):e122940.
[50]
Gill AL, Green SA, Abdullah S, et al. Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-programed death-ligand 1 (Avelumab)[J]. AIDS,2016,30(16):2487-2493.
[51]
Grabmeier-Pfistershammer K, Stecher C, Zettl M, et al. Antibodies targeting BTLA or TIM-3 enhance HIV-1 specific T cell responses in combination with PD-1 blockade[J]. Clin Immunol,2017,183:167-173.
[52]
Plachouri KM, Vryzaki E, Georgiou S. Cutaneous adverse eents of immune checkpoint inhibitors: A summarized overview[J]. Curr Drug Saf,2019,14(1):14-20.
[53]
Tanios GE, Doley PB, Munker R. Autoimmune hemolytic anemia associated with the use of immune checkpoint inhibitors for cancer: 68 cases from the FDA database and review[J]. Eur J Haematol,2019,102(2):157-162.
[54]
Nishino M, Ramaiya NH, Awad MM, et al. PD-1 Inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course[J]. Clin Cancer Res,2016,22(24):6051-6060.
[55]
Widmann G, Nguyen VA, Plaickner J, et al. Imaging features of toxicities by immune checkpoint inhibitors in cancer therapy[J]. Curr Radiol Rep,2016,5(11):59.
[56]
Winer A, Bodor JN, Borghaei H. Identifying and managing the adverse effects of immune checkpoint blockade[J]. J Thorac Dis,2018,10(Suppl 3):S480-S489.
[57]
Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors[J]. Cancer Treat Rev,2016,44:51-60.
[58]
Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group[J]. J Immunother Cancer,2017,5(1):95.
[59]
Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens A systematic review and Meta-analysis[J]. JAMA Oncol,2018,4(2):173-182.
[60]
Hughes J, Vudattu N, Sznol M, et al. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy[J]. Diabetes Care,2015,38(4):e55-e57.
[61]
Spain L, Walls G, Julve M, et al. Neurotoxicity from immune-checkpoint inhibition in the treatment of melanoma: a single centre experience and review of the literature[J]. Ann Oncol,2017,28(2):377-385.
[62]
Williams TJ, Benavides DR, Patrice KA, et al. Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer[J]. JAMA Neurol,2016,73(8):928-933.
[1] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[2] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[3] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[4] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[5] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 邹琴, 龙玲, 叶容, 张小洪. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 278-280.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[10] 蔡晨, 龚伟. 免疫治疗在胆道肿瘤中的应用现状及展望[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 162-166.
[11] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 605-613.
阅读次数
全文


摘要