切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (03) : 206 -211. doi: 10.3877/cma.j.issn.1674-1358.2020.03.005

所属专题: 文献

论著

甲型流感病毒感染者CD160+CD8+T淋巴细胞亚群分析
徐晓雪1, 王蓓蓓1, 宋蕊1, 宋洋子2, 赵雪1, 姜钰2, 曹钰2, 曾辉1,()   
  1. 1. 100015 北京,北京大学地坛医院教学医院传染病学研究所
    2. 100015 北京,首都医科大学附属北京地坛医院传染病学研究所
  • 收稿日期:2019-08-27 出版日期:2020-06-15
  • 通信作者: 曾辉
  • 基金资助:
    国家重点研发计划(No. 2016YFC1200805); 2017年新发突发传染病研究北京市重点实验室开放研究课题(No. DTKF201701); 2017年北京地坛医院院内基金(No. DTZLX201709)

Analysis of CD160+CD8+ lymphocyte subsets of influenza A virus infectors

Xiaoxue Xu1, Beibei Wang1, Rui Song1, Yangzi Song2, Xue Zhao1, Yu Jiang2, Yu Cao2, Hui Zeng1,()   

  1. 1. Peking University Ditan Teaching Hospital, 100015 Beijing, China
    2. Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
  • Received:2019-08-27 Published:2020-06-15
  • Corresponding author: Hui Zeng
  • About author:
    Corresponding author: Zeng Hui, Email:
引用本文:

徐晓雪, 王蓓蓓, 宋蕊, 宋洋子, 赵雪, 姜钰, 曹钰, 曾辉. 甲型流感病毒感染者CD160+CD8+T淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(03): 206-211.

Xiaoxue Xu, Beibei Wang, Rui Song, Yangzi Song, Xue Zhao, Yu Jiang, Yu Cao, Hui Zeng. Analysis of CD160+CD8+ lymphocyte subsets of influenza A virus infectors[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2020, 14(03): 206-211.

目的

研究甲型流感病毒(IAV)感染者外周血中CD160+CD8+ T淋巴细胞亚群的特征。

方法

收集2018年12月至2019年3月流感季就诊于北京大学地坛医院教学医院感染二科IAV感染者共37例及同期体检的健康对照者51例,应用多色流式细胞检测平台,检测外周血不同分化阶段CD160+CD8+ T淋巴细胞的比例。

结果

与健康对照相比,IAV感染者外周血T细胞中CD160+CD8+ T细胞比例下降[24.50%(14.70%,44.10%)vs. 8.85%(5.14%,18.15%)],差异有统计学意义(U = 326.00、P < 0.001)。IAV感染者与健康对照相比,其CD8+ T中初始T细胞(TN)[3.88%(1.28%,9.48%) vs. 0.22%(0.12%,0.60%)]、中央记忆性T细胞(TCM)[8.70%(4.43%,15.80%) vs. 1.51%(0.69%,2.54%)]、效应记忆性T细胞(TEM)[22.30%(13.80%,30.40%) vs. 7.71%(5.23%,16.25%)]和终末效应记忆T细胞(TEMRA)[(46.99 ± 22.91)% vs. (21.60 ± 13.38)%]4个亚群中CD160+细胞的比例均下降,差异有统计学意义(U = 238.50、81.50、412.00,t = 6.03;P均< 0.001)。IAV感染者出院时较入院时CD160+CD8+ T细胞比例上升[(8.92 ± 7.84)% vs. (16.40 ± 9.43)%](t = 4.09、P = 0.001),但仍低于正常水平[24.50%(14.70%,44.10%) vs. (16.40 ± 9.43)%],差异有统计学意义(U = 209.50、P = 0.0029)。

结论

甲型流感病毒感染者外周血中T淋巴细胞CD160+CD8+ T细胞亚群比例显著降低,可能是免疫失衡的重要表现。

Objective

To investigate the characteristics of CD160+CD8+ T lymphocyte subsets in peripheral blood of patients with influenza A virus (IAV) infection.

Methods

Total of 37 patients with IAV infection and 51 healthy controls in the same period were recruitmented in Peking University Ditan Teaching Hospital from December 2018 to March 2019, and the frequencies of CD160+CD8+ T cells in peripheral blood of different differentiation stages were detected by multicolor flow cytometry.

Result

Compared with health controls, the frequencies of CD160+CD8+ T cells in peripheral blood of patients with IAV infection decreased [24.50% (14.70%, 44.10%) vs. 8.85% (5.14%, 18.15%)], with significant difference (U = 326.00, P < 0.001). Compared with the controls, these decrease occurred in the four subsets of CD8+ T cells that include the naive T cells (TN) [3.88% (1.28%, 9.48%) vs. 0.22% (0.12%, 0.60%)], central memory T cells (TCM) [8.70% (4.43%, 15.80%) vs. 1.51% (0.69%, 2.54%)], effector memory T cells (TEM) [22.30% (13.80%, 30.40%) vs. 7.71% (5.23%, 16.25%)] and effective memory re-expressing T cells (TEMRA) [(46.99 ± 22.91) % vs. (21.60 ± 13.38) %] of cases with IAV infection, with significant differences (U = 238.50, 81.50, 412.00, t = 6.03; all P < 0.001). The proportion of CD160+CD8+ T cells in the discharged patients with IAV infection was higher than that of admission [(8.92 ± 7.84) % vs. (16.40 ± 9.43) %], with significant difference (t = 4.09, P = 0.001), but still lower than that of health controls [24.50% (14.70%, 44.10%) vs (16.40 ± 9.43) %], with significant difference (U = 209.50, P = 0.0029).

Conclusions

The frequency of CD160+CD8+ T cell subsets in peripheral blood T lymphocytes of patients with IAV infection decreased significantly, and may be an important manifestation of immune imbalance.

表1 健康对照和IAV感染者的一般资料
图1 健康对照和IAV感染者CD160+CD4+ T细胞及CD160+ CD8+ T细胞比例
表2 健康对照和IAV感染者外周血CD8+ T细胞各分化阶段的比例
表3 健康对照和IAV感染者外周血CD8+ T细胞各分化阶段CD160+细胞的比例
图2 IAV感染者入院时和出院时CD160+CD8+ T细胞比例
表4 16例IAV感染者入院时和出院时外周血CD8+ T细胞各分化阶段CD160+细胞的比例
表5 健康对照和IAV感染者出院时外周血CD8+ T细胞各分化阶段CD160+细胞的比例
[1]
Wendel I, Matrosovich M, Klenk HD. Snapshot: evolution of human influenza A viruses[J]. Cell Host Microbe,2015,17(3):416-416. e1.
[2]
Hamada H, Bassity E, Flies A, et al. Multiple redundant effector mechanisms of CD8+ T cells protect against influenza infection[J]. J Immunol,2013,190(1):296-306.
[3]
Sun J, Braciale TJ. Role of T cell immunity in recovery from influenza virus infection[J]. Curr Opin Virol,2013,3(4):425-429.
[4]
Attanasio J, Wherry EJ. Costimulatory and coinhibitory receptor pathways in infectious disease[J]. Immunity,2016,44(5):1052-1068.
[5]
Blackburn SD, Shin H, Haining WN, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection[J]. Nat Immunol,2008,10(1):29-37.
[6]
Rutishauser RL, Hartogensis W, Deguit CD, et al. Early and delayed antiretroviral therapy results in comparable reductions in CD8+ T cell exhaustion marker expression[J]. AIDS Res Hum Retroviruses, 2017,33(7):658-667.
[7]
Maïza H, Leca G, Mansur IG, et al. A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity[J]. J Exp Med,1993,178(3):1121-1126.
[8]
Peretz Y, He Z, Shi Y, et al. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction[J]. PLoS Pathog,2012,8(8):1-13.
[9]
中华人民共和国中央人民政府. 流行性感冒诊疗方案(2018年版修订版)[EB/OL]. 2018-11-19.

URL    
[10]
Hamann D, Baars PA, Rep MH, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells[J]. J Exp Med1,997,186(9):1407-1418.
[11]
Erickson JJ, Rogers MC, Tollefson SJ, et al. Multiple inhibitory pathways contribute to lung CD8+ T cell impairment and protect against immunopathology during acute viral respiratory infection[J]. J Immunol,2016,197(1):233-243.
[12]
Alwis R D, Bangs D J, Angelo M A, et al. Immunodominant dengue virus-specific CD8+ T cell responses are associated with a memory PD-1+ phenotype[J]. J Virol,2016,90(9):4771-4779.
[13]
Chatterjee B, Deng Y, Holler A, et al. CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo[J]. PLoS Pathog,2019,15(5):1-27.
[14]
Maeda M, Carpenito C, Russell R C, et al. Murine CD160, Ig-like receptor on NK cells and NKT cells, recognizes classical and nonclassical MHC class Ⅰ and regulates NK cell activation[J]. J Immunol,2005,175(7):4426-4432.
[15]
Cai G, Anumanthan A, Brown J A, et al. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator[J]. Nat Immunol,2008,9(2):176-185.
[16]
D’Addio F, Ueno T, Clarkson M, et al. CD160Ig fusion protein targets a novel costimulatory pathway and prolongs allograft survival[J]. PLoS One,2013,8(4):1-11.
[17]
Tan CL, Peluso MJ, Drijvers JM, et al. CD160 stimulates CD8+ T cell responses and is required for optimal protective immunity to Listeria monocytogenes[J]. Immunohorizons,2018,2(7):238-250.
[18]
Chibueze CE, Yoshimitsu M, Arima N. CD160 expression defines a uniquely exhausted subset of T lymphocytes in HTLV-1 infection[J]. Biochem Biophys Res Commun,2014,453(3):379-384.
[19]
Cooksley H, Riva A, Katzarov K, et al. Differential expression of immune inhibitory checkpoint signatures on antiviral and inflammatory T cell populations in chronic hepatitis B[J]. J Interferon Cytokine Res,2018,38(7):273-282.
[20]
Pombo C, Wherry E J, Gostick E, et al. Elevated expression of CD160 and 2B4 defines a cytolytic HIV-specific CD8+ T-cell population in elite controllers[J]. J Infect Dis,2015,212(9):1376-1386.
[21]
El-Far M, Pellerin C, Pilote L, et al. CD160 isoforms and regulation of CD4 and CD8 T-cell responses[J]. J Transl Med,2014,12(1):1-29.
[22]
Baitsch L, Legat A, Barba L, et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization[J]. PLoS One,2012,7(2):1-10.
[23]
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol,2013,13(4):227-242.
[24]
Yamamoto T, Price D A, Casazza J P, et al. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection[J]. Blood,2011,117(18):4805-4815.
[25]
Bengsch B, Seigel B, Ruhl M, et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation[J]. PLoS Pathog,2010,6(6):1-14.
[1] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[2] 王锃涛, 王宪波, 曹钰, 郝禹, 韩俊燕, 曾辉. 基于多色流式降维聚类方法的自发性细菌性腹膜炎患者T淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 92-101.
[3] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[4] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[5] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[6] 曾晓鹏, 范立新, 李成松, 刘坤朋, 周雄才, 王志华, 李笑生. CD4+T淋巴细胞水平与HIV/AIDS患者泌尿外科腔镜手术后感染风险评估[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(06): 502-506.
[7] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[8] 李玲, 于艳艳, 王玉杰, 赵凯. 毛细支气管炎患儿血清25(OH)D水平与Th17/Treg平衡的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 718-720.
[9] 刘泽, 郝言, 赵铎, 徐辉. 复方甘草酸苷对小儿哮喘T淋巴细胞及NK细胞的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 97-99.
[10] 泽仁尼玛, 杨建蓉, 李明琴, 陈颖. 阿莫西林/克拉维酸钾对肺结核患者淋巴细胞亚群CD4水平的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 61-63.
[11] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[12] 刘懿, 潘敏, 陈尧. 卢帕他定与依巴斯汀联合治疗慢性荨麻疹的效果及对补体水平和T淋巴细胞的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 189-194.
[13] 韩永清, 饶敏超, 傅峰, 黄开荣. 参芪十一味颗粒联合FOLFOX4方案化疗对晚期结直肠癌患者的近期疗效及其对血清IL-35、IL-37和T淋巴细胞亚群的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 400-404.
[14] 黄山, 吕松琴, 张娟, 徐丽萍, 李佳能, 李晓非. 云南地区新发艾滋病合并其他病原微生物感染患者外周血T淋巴细胞亚群分布特征初探[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 16-20.
[15] 范茹, 刘宇清, 胡晓榕, 王轶奇, 张芬, 岑星, 卜玉洁, 陈俊伟. 系统性红斑狼疮患者长链非编码RNA表达变化及其与CD8+T细胞相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 184-189.
阅读次数
全文


摘要