[1] |
Herberman RB, Nunn ME, Holden HT, et al. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors.Ⅱ. Characterization of effector cells[J]. Int J Cancer,1975,16(2):230-239.
|
[2] |
Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow[J]. Cell,1997,91(5):661-672.
|
[3] |
Vivier E, Raulet D H, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells[J]. Science,2011,331(6013):44-49.
|
[4] |
Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory-like NK cells[J]. Blood,2012,120(24):4751-4760.
|
[5] |
Schlums H, Cichocki F, Tesi B, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function[J]. Immunity,2015,42(3):443-456.
|
[6] |
Campbell JJ, Qin SX, Unutmaz D, et al. Unique subpopulations of CD561 NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire1[J]. J Immunol,2001,166(6):477-482.
|
[7] |
Cooper MA. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset[J]. Blood,2001,97(10):3146-3151.
|
[8] |
Schlums H, Cichocki F, Tesi B, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function[J]. Immunity,2015,42(3):443-456.
|
[9] |
Campos C, Pera A, Sanchez-Correa B, et al. Effect of age and CMV on NK cell subpopulations[J]. Exp Gerontol,2014,54:130-137.
|
[10] |
Mavilio D, Lombardo G, Benjamin J, et al. Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals[J]. Proc Natl Acad Sci USA,2005,102(8):2886-2891.
|
[11] |
Nielsen CM, White MJ, Bottomley C, et al. Impaired NK cell responses to pertussis and H1N1 influenza vaccine antigens in human cytomegalovirus-infected individuals[J]. J Immunol,2015,194(10):4657-4667.
|
[12] |
Messlinger H, Sebald H, Heger L, et al. Monocyte-derived signals activate human natural killer cells in response to leishmania parasites[J]. Front Immunol,2018,9:24.
|
[13] |
Kared H, Martelli S, Tan SW, et al. Adaptive NKG2C+CD57+ natural killer cell and Tim-3 expression during viral infections[J]. Front Immunol,2018,9:686.
|
[14] |
Phan M, Chun S, Kim S, et al. Natural killer cell subsets and receptor expression in peripheral blood mononuclear cells of a healthy Korean population: reference range, influence of age and sex, and correlation between NK cell receptors and cytotoxicity[J]. Hum Immunol,2017,78(2):103-112.
|
[15] |
Lam VC, Lanier LL. NK cells in host responses to viral infections[J]. Curr Opin Immunol,2017,44:43-51.
|
[16] |
Guia S, Fenis A, Vivier E, et al. Activating and inhibitory receptors expressed on innate lymphoid cells[J]. Semin Immunopathol, 2018,40(4):331-341.
|
[17] |
Sun C, Sun H, Zhang C. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma[J]. Cell Mol Immunol,2015,12(3):292-302.
|
[18] |
Shifrin N, Raulet D H, Ardolino M. NK cell self tolerance, responsiveness and missing-self recognition[J]. Semin Immunol, 2014,26(2):138-144.
|
[19] |
Cook KD, Waggoner SN, Whitmire JK. NK cells and their ability to modulate T Cells during Virus Infections[J]. Crit Rev Immunol,2014,34(5):359-388.
|
[20] |
Rusakiewicz S, Perier AL, Semeraro M, et al. NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients[J]. Oncoimmmunology,2016,6(1):e1137418.
|
[21] |
Guia S, Fenis A, Vivier E, et al. Activating and inhibitory receptors expressed on innate lymphoid cells[J]. Semin Immunopathol, 2018,4(40):331-341.
|
[22] |
Biassoni R, Malnati MS. Human natural killer receptors, co-receptors, and their ligands[J]. Curr Protoc Immunol,2018,121(1):e47.
|
[23] |
Veluchamy JP, Kok N, van der Vliet HJ, et al. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments[J]. Front Immunol,2017,8:631.
|
[24] |
Smith HR, Heusel JW, Mehta IK, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor[J]. Proc Natl Acad Sci USA,2002,99(13):8826-8831.
|
[25] |
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets[Z]. England: Elsevier Ltd,2001,22:633-640.
|
[26] |
Campbell KS, Hasegawa J. Natural killer cell biology: An update and future directions[J]. J Allergy Clin Immun,2013,132(3):536-544.
|
[27] |
Zhang J, Basher F, Wu JD. NKG2D ligands in tumor immunity: two sides of a coin[J]. Front Immunol,2015,6:97.
|
[28] |
Kruse PH, Matta J, Ugolini S, et al. Natural cytotoxicity receptors and their ligands[J]. Immunol Cell Biol,2014,92(3):221-229.
|
[29] |
Cerboni C, Ardolino M, Santoni A, et al. Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells[J]. Blood,2009,113(13):2955-2964.
|
[30] |
van Helden MJ, Zaiss DM, Sijts AJ. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice[J]. PLoS One,2012,7(12):e52027.
|
[31] |
Yin X, Liu T, Wang Z, et al. Expression of the inhibitory receptor TIGIT is up-regulated specifically on NK cells with CD226 activating receptor from HIV-Infected individuals[J]. Front Immunol, 2018,9:2341.
|
[32] |
Pesce S, Greppi M, Tabellini G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immun,2017,139(1):335-346.
|
[33] |
Li H, Zhai N, Wang Z, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection[J]. Gut,2018,67(11):2035-2044.
|
[34] |
Kim N, Kim HS. Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells[J]. Front Immunol,2018,9:2041.
|
[35] |
Jawahar S, Moody C, Chan M, et al. Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type ⅢA (CD16-Ⅱ)[J]. Clin Exp Immunol,1996,103(3):408-413.
|
[36] |
de Vries E, Koene HR, Vossen JM, et al. Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections[J]. Blood,1996,88(8):3022-3027.
|
[37] |
Vieillard V, Fausther-Bovendo H, Samri A, et al. Specific phenotypic and functional features of natural killer cells from HIV-infected long-term nonprogressors and HIV controllers[J]. J Acquir Immune Defic Syndr,2010,53(5):564-573.
|
[38] |
Jiang Y, Zhou F, Tian Y, et al. Higher NK cell IFN-γ production is associated with delayed HIV disease progression in LTNPs[J]. J Clin Immunol,2013,33(8):1376-1385.
|
[39] |
Lu CC, Wu TS, Hsu YJ, et al. NK cells kill mycobacteria directly by releasing perforin and granulysin[J]. J Leukoc Biol,2014,96(6):1119-1129.
|
[40] |
Gonzales CM, Williams CB, Calderon VE, et al. Antibacterial role for natural killer cells in host defense to Bacillus anthracis[J]. Infect Immun,2011,80(1):234-242.
|
[41] |
Schmidt S, Tramsen L, Hanisch M, et al. Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia[J]. J Infect Dis,2011,203(3):430-435.
|
[42] |
Schmidt S, Zimmermann S, Tramsen L, et al. Natural killer cells and antifungal host response[J]. Clin Vaccine Immunol,2013,20(4):452-458.
|
[43] |
Mahmoud AB, Tu MM, Wight A, et al. Influenza virus targets class Ⅰ MHC-educated NK cells for immunoevasion[J]. PLoS Pathog,2016,12(2):e1005446.
|
[44] |
Quillay H, El Costa H, Duriez M, et al. NK cells control HIV-1 infection of macrophages through soluble factors and cellular contacts in the human decidua[J]. Retrovirology,2016,13(1):39.
|
[45] |
Liu N, Liu B, Zhang L, et al. Recovery of circulating CD56 dim NK cells and the balance of Th17/Treg after nucleoside analog therapy in patients with chronic hepatitis B and low levels of HBsAg[J]. Int Immunopharmacol,2018,62:59-66.
|
[46] |
Stegemann-Koniszewski S, Behrens S, Boehme JD, et al. Respiratory influenza A virus infection triggers local and systemic natural killer cell activation via Toll-like receptor 7[J]. Front Immunol,2018,9:245.
|
[47] |
Cerboni C, Zingoni A, Cippitelli M, et al. Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis[J]. Blood,2007,110(2):606-615.
|
[48] |
De Pelsmaeker S, Romero N, Vitale M, et al. Herpesvirus evasion of natural killer cells[J]. J Virol,2018,92(11):e02105-e02117.
|
[49] |
Wagstaffe HR, Nielsen CM, Riley EM, et al. IL-15 promotes polyfunctional NK Cell responses to Influenza by boosting IL-12 production[J]. J Immunol,2018,200(8):2738-2747.
|
[50] |
Rosenheinrich M, Heine W, Schmuhl CM, et al. Natural killer cells mediate protection against Yersinia pseudotuberculosis in the mesenteric lymph nodes[J]. PLoS One,2015,10(8):e136290.
|
[51] |
Ivin M, Dumigan A, de Vasconcelos FN, et al. Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection[J]. PLoS Pathog,2017,13(11):e1006696.
|
[52] |
Zucchini N, Crozat K, Baranek T, et al. Natural killer cells in immunodefense against infective agents[J]. Expert Rev Anti-Infe,2014,6(6):867-885.
|
[53] |
Mavoungou E, Bouyou-Akotet MK, Kremsner PG. Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30)[J]. Clin Exp Immunol,2005,139(2):287-296.
|
[54] |
Koch J, Steinle A, Watzl C, et al. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection[J]. Trends Immunol,2013,34(4):182-191.
|
[55] |
Ye W, Chew M, Hou J, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway[J]. PLoS Pathogens,2018,14(10):e1007298.
|