切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2016, Vol. 10 ›› Issue (02) : 248 -253. doi: 10.3877/cma.j.issn.1674-1358.2016.02.025

基础论著

人脐带间充质干细胞对耐亚胺培南铜绿假单胞菌耐药性形成的影响
郑璇儿1, 杨杰1,(), 穆小萍2, 赖卫明2, 许芳1, 刘晓虹1, 杨浩鸣1, 杨淑梅1   
  1. 1. 510010 广州市,广东省妇幼保健院新生儿科
    2. 510010 广州市,广东省妇幼保健院检验科
  • 收稿日期:2015-07-23 出版日期:2016-04-15
  • 通信作者: 杨杰
  • 基金资助:
    广州市科技计划项目(No. 2013J4100008)

Effect of human umbilical cord mesenchymal stem cells on the development of the drug resistance of imipenem-resistant Pseudomonas aeruginosa

Xuan’er Zheng1, Jie Yang1,(), Xiaoping Mu2, Weiming Lai2, Fang Xu1, Xiaohong Liu1, Haoming Yang1, Shumei Yang1   

  1. 1. Neonatology, Guangdong Women and Children Hospital, Guangzhou 510010, China
    2. Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 510010, China
  • Received:2015-07-23 Published:2016-04-15
  • Corresponding author: Jie Yang
引用本文:

郑璇儿, 杨杰, 穆小萍, 赖卫明, 许芳, 刘晓虹, 杨浩鸣, 杨淑梅. 人脐带间充质干细胞对耐亚胺培南铜绿假单胞菌耐药性形成的影响[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(02): 248-253.

Xuan’er Zheng, Jie Yang, Xiaoping Mu, Weiming Lai, Fang Xu, Xiaohong Liu, Haoming Yang, Shumei Yang. Effect of human umbilical cord mesenchymal stem cells on the development of the drug resistance of imipenem-resistant Pseudomonas aeruginosa[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2016, 10(02): 248-253.

目的

探讨人脐带间充质干细胞(hUCMSCs)体外对耐亚胺培南铜绿假单胞菌(IRPA)耐药性形成及对OprD2基因的影响。

方法

本实验设立3个组,实验组为hUCMSCs组,对照组为细胞对照组(即人肺成纤维细胞组,NHLF组)和空白对照组。次抑菌浓度肉汤诱导PA耐药传导过程中,hUCMSCs组和NHLF组分别加入其与PA共培育所得的上清液,空白对照组加入细胞培养液,观察3组诱导耐药所需代数以及抑菌圈的大小。诱导耐药前后分别采用K-B法及real-time PCR法测定PA对常见抗菌药物的敏感性及OprD2基因的表达量。

结果

经次抑菌浓度的亚胺培南诱导后,hUCMSCs组PA耐药性的出现较NHLF组及空白对照组延迟。NHLF组和空白对照组PA于诱导的第17代出现亚胺培南耐药,而hUCMSCs组PA于第19代出现耐药性。real-time PCR结果显示,诱导耐药后PA中OprD2表达量较诱导前出现减少或消失。其中hUCMSCs组PA OprD2的表达量减少至诱导耐药前的10.96%,而NHLF及空白对照组OprD2无表达,即诱导后出现OprD2基因缺失。

结论

人脐带间充质干细胞具有延迟PA耐药性形成的作用,其机制可能是通过分泌抗菌肽LL-37和人β防御素-2从而抑制OprD2表达的减少,而外膜蛋白OprD2表达量减少或缺失是引起PA对亚胺培南耐药的原因。

Objective

To investigate the effect of human umbilical cord mesenchymal stem cells (hUCMSCs) in vitro on the development of the drug resistance of imipenem-resistant Pseudomonas aeruginosa and on OprD2 gene.

Methods

This experiment included three groups: experiment group (hUCMSCs group), control group (cells control group, namely normal human lung fibroblast, NHLF group) and blank control group. During the conductive process of Pseudomonas aeruginosa (PA) drug resistance induced by sub-inhibitory concentrations of broth, the hUCMSCs group and the NHLF group were added with the supernatants obtained from their joint cultivation with PA, respectively; while the blank control group was administrated with cell culture medium. The numbers of generations required by induced drug resistance in the three groups and the sizes of inhibition zones were observed. The sensitivity of PA to common antibacterial agents and the expression quantity of OprD2 gene were determined by K-B method and real-time PCR method.

Results

Through the induction of sub-inhibitory concentration of imipenem, the occurrence of PA drug resistance in the hUCMSCs group was relatively later than that of the blank control group. Imipenem drug resistance appeared in passage 17 of PA induced in the NHLF group and the blank control group, while it occurred in passage 19 in the hUCMSCs group. The results of real-time PCR showed that after the induction of drug resistance, the expression quantity of OprD2 in PA decreased or disappeared compared with that before the induction. The expression quantity of OprD2 in PA in the hUCMSCs group was reduced to 10.96% of the induction, while there were no OprD2 expression in the NHLF and the blank control group, OprD2 gene deletion occurred after the induction.

Conclusions

hUCMSCs could delay the formation of PA’s drug resistance. This mechanism is probably through reducing the inhibition of the expression of OprD2 by secreting antimicrobial peptide LL-37 and human β-defensin 2 (HBD-2), and the decrease or deletion of the expression of outer membrane protein OprD2 is the cause for PA’s drug resistance to imipenem.

表1 内参基因与目的基因引物序列
表2 三组共培育后上清液中抗菌肽的水平(±s,ng/ml)
表3 诱导耐药前后PA株对常见抗菌药物的抑菌圈大小(mm)
图2 PA总RNA电泳图
图3 内参基因扩增曲线与熔解曲线图
图4 OprD2基因的扩增与熔解曲线图
图5 PA菌株诱导耐药前后OprD2基因表达水平
图1 三组PA诱导传代至P17时对亚胺培南的敏感性比较
[1]
Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials[J]. Front Microbiol,2014,4(1):422.
[2]
Bas AY, Demirel N, Zenciroglu A, et al. Nosocomial blood stream infections in a neonatal intensive care unit in Ankara, Turkey[J]. Turk J Pediatr,2010,52(5):464-470.
[3]
Zavascki AP, Carvalhaes CG, Picão RC, et al. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms andimplications for therapy[J]. Expert Rev Anti Infect Ther,2010,8(1):71-93.
[4]
Boyle DP, Zembower TR. Epidemiology and management of emerging drug-resistant Gram-negative bacteria: extended-spectrum β-lactamases and beyond[J]. Urol Clin North Am,2015,42(4):493-505.
[5]
Delcour AH. Outer membrane permeability and antibiotic resistance[J]. Biochim Biophys Acta,2009,1794(5):808-816.
[6]
Knopp M, Andersson DI. Amelioration of the fitness costs of antibiotic resistance due to reduced outer membrane permeability by upregulation of alternative porins[J]. Mol Biol Evol,2015,32(12):3252-3263.
[7]
Ochs MM, McCusker MP, Bains M, et al. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD2 selective for imipenem and basic amino acids[J]. Antimicrob agents Chemother,1999,43(5):1085-1090.
[8]
Samanta S, Scorciapino MA, Ceccarelli M. Molecular basis of substrate translocation through the outer membrane channel OprD of Pseudomonas aeruginosa[J]. Phys Chem Chem Phys,2015,17(37):23867-23876.
[9]
Arabestani MR, Rajabpour M, Yousefi Mashouf R, et al. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR[J]. Arch Iran Med,2015,18(2):102-108.
[10]
Richardot C, Plésiat P, Fournier D, et al. Carbapenem resistance in cystic fibrosis strains of Pseudomonas aeruginosa as a result of amino acid substitutions in porin OprD[J]. Int J Antimicrob Agents,2015,45(5):529-532.
[11]
刘晓虹. 人脐带间充质干细胞对耐亚胺培南铜绿假单胞菌生长的抑制作用[D]. 广州: 广州医学院,2013
[12]
Franklin R, Matthew A, Jeff Alder, et al. Clinical and Laboratory Standards Institute.2010. Performance standards for antimicrobial susceptibility testing:Twenty-Second informational supplement[S]. [M100-S22]. Clinical and Laboratory Standards Institute,2010,31(1):161-163.
[13]
Miller K, O’Neill AJ, Chopra I. Response of Escherichia coli hypermutators to selection pressure with antimicrobial agents from different classes[J]. J Antimicrob Chemother,2002,49(6):925-934.
[14]
Parker CM, Kutsogiannis J, Muscedere J, et al. Canadian Critical Care Trials Group. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes[J]. J Crit Care,2008,23(1):18-26.
[15]
Ghanshani R, Gupta R, Gupta BS, et al. Epidemiological study of prevalence, determinants, and outcomes of infections in medical ICU at a tertiary care hospital in India[J]. Lung India,2015,32(5):441-48.
[16]
El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia[J]. J Antimicrob Chemother,2009,64(2):229-238.
[17]
Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells[J]. Semin Immunopathol,2011,33(6):593-602.
[18]
Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells[J]. Trends Mol Med,2012,18(2):128-134.
[19]
Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population[J]. Stem cells,2008, 26(3):591-599.
[20]
Frausin S, Viventi S, Verga Falzacappa L, et al. Wharton’s jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research[J]. Acta Histochem,2015,117(4-5):329-338.
[21]
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J]. Stem Cells,2007,25(6):1384-1392.
[22]
Heo JS, Choi Y, Kim HS, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med,2016,37(1):115-125.
[23]
Seshareddy K, Troyer D, Weiss ML. Method to isolate mesenchymal-like cells from Wharton’s Jelly of umbilical cord[J]. Methods Cell Biol,2008,86:101-119.
[24]
Tamber S, Ochs MM, Hancock RE. Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa[J]. J Bacteriol,2006,188(1):45-54.
[25]
Li H, Luo YF, Williams BJ, et al. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies[J]. Int J Med Microbiol,2012,302(2):63-68.
[1] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[4] 张长文, 林少清, 吕敏捷, 金霄, 朱常军, 冯旰珠. 铜绿假单胞菌分泌蛋白Pec1抑制巨噬细胞自噬及影响铜绿假单胞菌清除效应初步观察[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 370-376.
[5] 刘鑫, 闻萍, 周阳, 徐玲玲. 维持性血液透析合并菌血症患者病原菌分布及耐药性分析[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 192-197.
[6] 刘红艳, 韦曦, 凌均棨. 根管封药的应用现状及研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 69-74.
[7] 魏芳芳, 胡浩, 黄丽华, 韩旻雁, 姚麟. 某院2016~2020年泌尿外科多重耐药病原菌分布及耐药性分析[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 320-324.
[8] 刘法永, 胡萍, 戴丽. 获得性肺炎患者血流感染病原菌分布及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 666-669.
[9] 卢平, 欧立文, 李牛秀, 廖彩霞, 刘红玉. 黄芪多糖对铜绿假单胞菌致大鼠肺部感染的作用分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 323-326.
[10] 谭自明, 罗琼, 张美, 王君. 小儿病毒性脑炎并发肺部感染的病原菌及耐药性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 394-396.
[11] 孙康, 李王平, 潘蕾, 金发光. 医院获得性铜绿假单胞菌肺炎危险因素分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 166-170.
[12] 黎金秋, 韦晓芳, 王成玉. 腹膜透析相关性腹膜炎细菌谱变迁及药敏分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 264-269.
[13] 吴旻杭, 曹莉莉. 细胞自噬在肝癌进展中的作用[J]. 中华消化病与影像杂志(电子版), 2021, 11(05): 222-225.
[14] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144,150.
[15] 刁福强, 罗欣, 古春明, 唐玲玲. 广州某医院儿童社区获得性肺炎病原菌分布及耐药性分析[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 38-44.
阅读次数
全文


摘要