切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (04) : 313 -315. doi: 10.3877/cma.j.issn.1674-1358.04.001

所属专题: 文献

综述

自噬在人类免疫缺陷病毒和结核分枝杆菌共同感染中的作用
张霞1, 付玉荣2, 李猛3, 孟祥英1, 高昆山4, 伊正君1,()   
  1. 1. 261053 潍坊市,山东省潍坊医学院医学检验学系;261031 潍坊市,山东省潍坊医学院附属医院检验科
    2. 261053 潍坊市,山东省潍坊医学院临床医学院微生物教研室
    3. 261053 潍坊市,山东省潍坊医学院医学检验学系
    4. 261031 潍坊市,山东省潍坊医学院附属医院检验科
  • 收稿日期:2017-12-22 出版日期:2018-08-15
  • 通信作者: 伊正君
  • 基金资助:
    山东省自然科学基金(No. ZR2016BL19)

Autophagy in human immunodeficiency virus and Mycobacterium tuberculosis coinfection

Xia Zhang1, Yurong Fu2, Meng Li3, Xiangying Meng1, Kunshan Gao4, Zhengjun Yi1,()   

  1. 1. Department of Laboratory Medicine, Shandong Province, Weifang 261053, China
    2. Department of Microbiology, Weifang Medical University, Shandong Province, Weifang 261053, China
    4. Clinical Laboratory of Affiliated Hospital of Weifang Medical University, Shandong Province, Weifang 261031, China
  • Received:2017-12-22 Published:2018-08-15
  • Corresponding author: Zhengjun Yi
  • About author:
    Corresponding Author: Yi Zhengjun, Email:
引用本文:

张霞, 付玉荣, 李猛, 孟祥英, 高昆山, 伊正君. 自噬在人类免疫缺陷病毒和结核分枝杆菌共同感染中的作用[J/OL]. 中华实验和临床感染病杂志(电子版), 2018, 12(04): 313-315.

Xia Zhang, Yurong Fu, Meng Li, Xiangying Meng, Kunshan Gao, Zhengjun Yi. Autophagy in human immunodeficiency virus and Mycobacterium tuberculosis coinfection[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2018, 12(04): 313-315.

人类免疫缺陷病毒/结核分枝杆菌(HIV/M.tb)共同感染已经成为发展中国家的主要公共卫生威胁。自噬是一种溶酶体分解代谢过程,正常状态下维持细胞内环境的稳态,还涉及细胞内病原体如HIV-1和M.tb的清除,可增强机体的免疫防御能力。本文概述在HIV-1和M.tb单独感染以及共同感染的背景下自噬对机体免疫防御的调控,全面了解病原体与自噬的相互作用,展望未来开发基于自噬原理新的预防性疫苗和治疗干预措施的巨大潜力。

HIV/M.tb coinfection has become a major public health threat in developing countries. Autophagy is a process of lysosomal catabolism that maintains the homeostasis of the cell under normal conditions but also involves the clearance of intracellular pathogens such as HIV-1 and M.tb. It also enhances the host’s immune defense mechanisms against infectious diseases. This review summarizes the regulation of autophagy on immune defense in the context of HIV-1 and M.tb infection alone and coinfection, overviews the comprehensive understanding of the pathogen-autophagy interaction and highlights the future development concerning the new prophylaxis vaccines improvement and the great potential of therapeutic interventions based on the principle of autophagy.

[1]
World Health Organization. Global Tuberculosis Report 2016 [EB/OL]. Geneva: 2016.

URL    
[2]
Getahun H,Gunneberg C,Granich R, et al. HIV infection-associated tuberculosis: the epidemiology and the response[J]. Clin Infect Dis,2010,50(3):201-207.
[3]
World Health Organization. Global tuberculosis report 2017[EB/OL]. Geneva: 2017.

URL    
[4]
Lamb CA,Yoshimori T,Tooze SA, et al. The autophagosome: origins unknown, biogenesis complex[J]. Nat Rev Mol Cell Bio,2013,14(12):759-774.
[5]
Xu Y,Eissa NT. Autophagy in innate and adaptive immunity[J]. Proc Am Thorac Soc,2010,7(1):22-28.
[6]
Wang X,Gao Y,Tan J, et al. HIV-1 and HIV-2 infections induce autophagy in Jurkat and CD4+ T cells[J]. Cell Signal,2012,24(7):1414-1419.
[7]
Espert L,Denizot M,Grimaldi M, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4[J]. J Clin Invest,2006,116(8):2161-2172.
[8]
El-Hage N,Rodriguez M,Dever SM, et al. HIV-1 and morphine regulation of autophagy in Microglia: limited interactions in the context of HIV-1 infection and opioid abuse[J]. J Virol,2015,89(2):1024-1035.
[9]
Sagnier S,Daussy CF,Borel S, et al. Autophagy Restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes[J]. J Virol,2015,89(1):615-625.
[10]
Nardacci R,Amendola A,Ciccosanti F, et al. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients[J]. Autophagy,2014,10(7):1167-1178.
[11]
Borel S,Robert-Hebmann V,Alfaisal J, et al. HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy[J]. AIDS,2015,29(3):275-286.
[12]
Li JC,Au K,Fang J, et al. HIV-1 trans-activator protein dysregulates IFN-γ signaling and contributes to the suppression of autophagy induction[J]. AIDS,2011,25(1):15-25.
[13]
North RJ,Jung YJ. Immunity to tuberculosis[J]. Annu Rev Immuno,2004,22(3569):599-623.
[14]
Ladel CH,Blum C,Dreher A, et al. Protective role of gamma/delta T cells and alpha/beta T cells in tuberculosis[J]. Eur J Immunol,1995,25(10):2877-2881.
[15]
Fratti RA,Chua J,Vergne I, et al. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest[J]. Proc Natl Acad Sci USA,2003,100(9):5437-5442.
[16]
Vergne I,Fratti RA,Hill PJ, et al. Mycobacterium tuberculosis phagosome maturation arrest: Mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion[J]. Mol Biol Cell,2003,15(2):751-760.
[17]
Shui W,Petzold CJ,Redding AM, et al. Organelle membrane proteomics reveals differential influence of Mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation[J]. J Proteome Res,2011,10(1):339-348.
[18]
Seto S,Tsujimura K,Koide Y, et al. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages[J]. Cell Microbiol,2012,14(5):710-727.
[19]
Gomes LC,Dikic I. Autophagy in antimicrobial immunity.[J]. Mol Cell,2014,54(2):224-233.
[20]
Huang J,Brumell JH. Bacteria-autophagy interplay: a battle for survival[J]. Nat Rev Microbiol,2014,12(2):101-114.
[21]
Watson RO,Manzanillo P,Cox JS, et al. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway[J]. Cell,2012,150(4):803-815.
[22]
Manzanillo P,Ayres JS,Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens[J]. Nature,2013,501(7468):512-516.
[23]
Patel NR,Swan K,Li X, et al. Impaired M. tuberculosis-mediated apoptosis in alveolar macrophages from HIV+ persons: potential role of IL-10 and BCL-3[J]. J Leukoc Biol,2009,86(1):53-60.
[24]
Jasenosky LD,Scriba TJ,Hanekom WA, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans[J]. Immunol Rev,2015,264(1):74-87.
[25]
Liu PT,Stenger S,Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J]. Science,2006,311(5768):1770-1773.
[26]
Borella E,Nesher G,Israeli E, et al. Vitamin D: a new anti-infective agent?[J]. Ann NY Acad Sci,2014,1317(1):76-83.
[27]
Yuk J,Shin D,Lee H, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin[J]. Cell Host Microbe,2009,6(3):231-243.
[28]
Campbell GR,Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy[J]. PLoS Pathog,2012,8(5):e1002689.
[29]
Anandaiah A,Sinha S,Bole M, et al. Vitamin D rescues impaired Mycobacterium tuberculosis-mediated tumor necrosis factor release in macrophages of HIV-seropositive individuals through an enhanced Toll-like receptor signaling pathway in vitro[J]. Infect Immun,2013,81(1):2-10.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[3] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[4] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[5] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[6] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[7] 熊企秋, 邢卉春, 李宝亮, 王杨, 贾哲, 张珂, 黄容海, 蒋力. 人类免疫缺陷病毒感染对肛瘘患者接受切开挂线术治疗预后的影响[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 303-308.
[8] 丁兴欢, 王小永, 李风志, 梁博, 冯恩山. 颅内外血管搭桥联合贴敷治疗慢性颈内动脉闭塞的人类免疫缺陷病毒感染者一例及文献复习[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 314-319.
[9] 戚仕轩, 阮连国. 人类免疫缺陷病毒感染快速启动抗逆转录病毒治疗研究及模式探索[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 193-199.
[10] 曾雪灵, 杨思园, 常宇飞, 赵红心, 王凌航. 176例人类免疫缺陷病毒合并肺部感染者呼吸道病原体特点与免疫学特征[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(03): 142-148.
[11] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[12] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[13] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[14] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[15] 李佳佳, 李凌华, 吕诗韵, 冯凯, 刘琳珊, 钟海丹, 颜婵, 刘聪. 广州市病毒学抑制失败HIV/AIDS患者的耐药特征及影响因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 207-212.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?