切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 353 -361. doi: 10.3877/cma.j.issn.1674-1358.2025.06.005

论著

Omicron变异株流行期间不同年龄段儿童感染新型冠状病毒的临床特征及核酸转阴时间影响因素
董凯华, 姚艳青(), 苗敏   
  1. 100015 北京,首都医科大学附属北京地坛医院儿科
  • 收稿日期:2025-08-28 出版日期:2025-12-15
  • 通信作者: 姚艳青

Influencing factors of nucleic acid conversion time to negtive and clinical characteristics of severe acute respiratory syndrome coronavirus 2 infection of children in different age groups during the Omicron variant pandemic

Kaihua Dong, Yanqing Yao(), Min Miao   

  1. Pediatrics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2025-08-28 Published:2025-12-15
  • Corresponding author: Yanqing Yao
引用本文:

董凯华, 姚艳青, 苗敏. Omicron变异株流行期间不同年龄段儿童感染新型冠状病毒的临床特征及核酸转阴时间影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(06): 353-361.

Kaihua Dong, Yanqing Yao, Min Miao. Influencing factors of nucleic acid conversion time to negtive and clinical characteristics of severe acute respiratory syndrome coronavirus 2 infection of children in different age groups during the Omicron variant pandemic[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2025, 19(06): 353-361.

目的

探讨Omicron变异株流行期间不同年龄段儿童感染新型冠状病毒(SARS-CoV-2)的临床特征及核酸转阴时间的影响因素。

方法

回顾性分析2022年1月28日至2023年6月20日首都医科大学附属北京地坛医院收治的155例感染SARS-CoV-2患儿的临床资料。根据不同年龄段儿童免疫系统发育差异及流行病学特点,将其分为<7岁组(24例)、7~12岁组(36例)和>12岁组(95例),比较3组患儿的临床特征、实验室检查指标和疫苗接种分布差异,组间比较采用卡方检验、秩和检验或单因素方差分析。采用Spearman相关性分析筛选影响SARS-CoV-2核酸转阴时间的相关因素,并构建多元线性回归模型明确其独立影响因素。

结果

<7岁组患儿临床分型为普通型者比例均高于7~12岁组(20.83% vs. 0.00%:P=0.008)和>12岁组(20.83% vs. 2.11%:P=0.004),差异均有统计学意义。<7岁组患儿住院时间[9.00(8.00,14.00)d]和核酸转阴时间[7.00(6.25,7.00)d]均短于7~12岁组[ 14.00(9.25,15.75)d,9.00(6.00,12.00)d]和>12岁组[13.00(10.00,15.00)d,10.00(8.00,12.00)d],差异均有统计学意义(P均<0.05)。<7岁组患儿行新型冠状病毒肺炎(COVID-19)疫苗接种针次分布[0针:62.50%(15/24),1针:12.50%(3/24),2针:25.00%(6/24),3针:0.00%(0/24)]与7~12岁组[0针:5.56%(2/36),1针:11.11%(4/36),2针:77.78%(28/36),3针:5.56%(2/36)]和>12岁组相比[0针:4.21%(4/95),1针:3.16%(3/95),2针:90.53%(86/95),3针:2.11%(2/95)],差异均有统计学意义(Z=-5.810、P<0.001,Z=-7.251、P<0.001)。<7岁组患儿鼻塞流涕发生率[(39.13%(9/23)]高于>12岁组[14.12%(12/85)],差异有统计学意义(P=0.015)。>12岁组患儿咽部不适发生率[57.65%(49/85)]高于<7岁组[21.74%(5/23)],差异有统计学意义(χ2=9.336、P=0.002)。<7岁组、7~12岁组和>12岁组患儿抽搐、呕吐腹泻发生率总体差异有统计学意义(χ2=6.029、P=0.026,χ2=6.614、P=0.027),但经Bonferroni校正P值行组间两两比较均未发现任何两组间差异有统计学意义(P均>0.0167)。>12岁组患儿白细胞介素(IL)6水平升高者占比[47.37%(45/95)]低于<7岁组[75.00%(18/24)]和7~12岁组[72.22%(26/36)],差异均有统计学意义(χ2=5.872、P=0.015,χ2=6.496、P=0.011)。>12岁组患儿乳酸脱氢酶水平[182.15(161.00,215.00)U/L]、D-二聚体水平[0.25(0.18,0.49)μg/ml]和N基因Ct值[21.92(17.98,26.41)]均低于<7岁组[275.35(215.45,320.10)U/L、0.49(0.33,0.76) μg/ml、27.59(22.53,32.60)]和7~12岁组患儿[237.35(205.57,260.15)U/L、0.36(0.25,0.87) μg/ml、27.90(21.33,34.44)],差异均有统计学意义(P均<0.05)。>12岁组患儿ORF1ab基因Ct值[23.80(20.56,29.30)]低于7~12岁组患儿[30.07(22.85,36.46)],差异有统计学意义(Z=3.083、P=0.002)。7~12岁组患儿抗-SARS-CoV-2 IgG水平[3.32(1.57,8.28)S/CO]均高于<7岁组[0.81(0.03,14.58)S/CO]和>12岁组患儿[1.36(0.58,4.18)S/CO],差异均有统计学意义(Z=-2.537、P=0.034,Z=2.421、P=0.046)。Spearman相关性分析显示,年龄(ρ=0.312、P<0.001)、身体质量指数(ρ=0.250、P=0.002)、疫苗接种2针以上(ρ=0.326、P<0.001)、是否有症状(ρ=0.445、P<0.001)、发热(ρ=0.334、P<0.001)、咽部不适(ρ=0.401、P<0.001)、头痛头晕(ρ=0.252、P=0.002)、中性粒细胞与淋巴细胞比值(ρ=0.369、P<0.001)、IL-6(ρ=0.192、P=0.016)以及肌酐(ρ=0.323、P<0.001)与SARS-CoV-2核酸转阴时间均呈正相关,天门冬氨酸氨基转移酶(ρ=-0.278、P<0.001)、乳酸脱氢酶(ρ=-0.175、P=0.029)、活化部分凝血活酶时间(ρ=-0.162、P=0.044)、D-二聚体(ρ=-0.331、P<0.001)和抗-SARS-CoV-2 IgG(ρ=-0.278、P<0.001)与SARS-CoV-2核酸转阴时间均呈负相关,差异均有统计学意义。多元线性回归模型显示模型整体显著(F=7.016,P<0.001),该模型可以解释SARS-CoV-2核酸转阴时间的43.4%变化原因(R2=0.434)。有症状(β=0.263、95%CI:0.873~6.513、P=0.011)和咽部不适(β=0.153、95%CI:0.029~2.603、P=0.045)为SARS-CoV-2核酸转阴时间延迟的独立危险因素,抗-SARS-CoV-2 IgG水平(β=-0.209、95%CI:-0.022~0.002、P=0.022)为SARS-CoV-2核酸转阴时间缩短的独立保护因素。

结论

Omicron变异株流行期间儿童感染SARS-CoV-2临床表现以轻型为主,临床特征与年龄密切相关。有症状、咽部不适患儿核酸转阴时间延长,而高水平抗-SARS-CoV-2 IgG有助于缩短核酸转阴时间,需关注不同年龄段患儿的个体化管理,强调疫苗接种及抗体监测在预后评估中的价值。

Objective

To investigate the influencing factors for nucleic acid negative conversion and cinical characteristic of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of children in different age groups during the Omicron epidemic.

Methods

The clinical data of 155 children infected with SARS-CoV-2 admitted to Beijing Ditan Hospital, Capital Medical University from January 28th, 2022 to June 20th, 2023 were analyzed, retrospectively. According to the differences in immune system development and epidemiological characteristics, children were divided into<7-year-old group (24 cases), 7-12-year-old group (36 cases) and>12-year-old group (95 cases). The clinical characteristics, laboratory test indicators and vaccination distribution of the three groups were compared, respectively; Inter-group comparisons were analyzed by Chi-square test, rank sum test or one-way ANOVA. The related factors for SARS-CoV-2 nucleic acid conversion to negative were screened by Spearman correlation analysis, and the independent influencing factors were identified by constructing multiple linear regression model.

Results

The proportion of children<7-year-old with a clinical classification of common type was higher than that of 7-12-year-old group (20.83% vs. 0.00%: P=0.008) and>12-year-old group (20.83% vs. 2.11%: P=0.004), with significant differences. The hospital duration [9.00 (8.00, 14.00) days] and nucleic acid negative conversion time [7.00 (6.25, 7.00) days] of children in<7-year-old group were shorter than those of 7-12-year-old group [14.00 (9.25, 15.75) days, 9.00 (6.00, 12.00) days] and>12-year-old group [13.00 (10.00, 15.00) days, 10.00 (8.00, 12.00) days], with significant differences (all P<0.05). The distribution of cronavirus dsease 2019 (COVID-19) vaccine doses in<7-year-old group [0 dose: 62.50% (15/24), 1 dose: 12.50% (3/24), 2 doses: 25.00% (6/24), 3 doses: 0.00% (0/24)] were different from those of 7-12-year-old group [0 dose: 5.56% (2/36), 1 dose: 11.11% (4/36), 2 doses: 77.78% (28/36), 3 doses: 5.56% (2/36)] and>12-year-old group [0 dose: 4.21% (4/95), 1 dose: 3.16% (3/95), 2 doses: 90.53% (86/95), 3 doses: 2.11% (2/95)], with significant differences (Z=-5.810, P<0.001; Z=-7.251, P<0.001). The incidence of nasal congestion and runny nose of children in<7-year-old group [39.13% (9/23)] was higher than that of>12-year-old group [14.12% (12/85)], with significant difference (P=0.015). The incidence of pharyngeal discomfort of children in>12-year-old group [57.65% (49/85)] was higher than that of<7-year-old group [21.74% (5/23)], with significant difference (χ2=9.336, P=0.002). The incidence of convulsions, vomiting and diarrhea among<7-year-old group, 7-12-year-old group and>12-year-old group were with significant differences (χ2=6.029, P=0.026; χ2=6.614, P=0.027), but no statistically significant difference was found between any two groups after Bonferroni correction (all P>0.0167). The proportion of children with elevated interleukin (IL) 6 in>12-year-old group [47.37% (45/95)] were lower than those of<7-year-old group [75.00% (18/24)] and 7-12-year-old group [72.22% (26/36)], with significant differences (χ2=5.872, P=0.015; χ2=6.496, P=0.011). The levels of lactate dehydrogenase [182.15 (161.00, 215.00) U/L], D-dimer [0.25 (0.18, 0.49) μg/ml] and N gene Ct value [21.92 (17.98, 26.41)] of children in>12-year-old group were all lower than those of<7-year-old group [275.35 (215.45, 320.10) U/L, 0.49 (0.33, 0.76) μg/ml, 27.59 (22.53, 32.60)] and 7-12-year-old group [237.35 (205.57, 260.15) U/L, 0.36 (0.25, 0.87) μg/ml, 27.90 (21.33, 34.44)], with significant differences (all P<0.05). The ORF1ab gene Ct value [23.80 (20.56, 29.30)] of children in>12-year-old group was lower than that of 7-12-year-old group [30.07 (22.85, 36.46)], with significant difference (Z=3.083, P=0.002). The anti-SARS-CoV-2 IgG level [3.32 (1.57, 8.28) S/CO] of children in 7-12-year-old group was higher than those of<7-year-old group [0.81 (0.03, 14.58) S/CO] and>12-year-old group [1.36 (0.58, 4.18) S/CO], with significant differences (Z=-2.537, P=0.034; Z=2.421, P=0.046). Spearman correlation analysis showed that age (ρ=0.312, P<0.001), body mass index (ρ=0.250, P=0.002), having received more than two doses of vaccine (ρ=0.326, P<0.001), presence of symptoms (ρ=0.445, P<0.001), fever (ρ=0.334, P<0.001), pharyngeal discomfort (ρ=0.401, P<0.001), headache and dizziness (ρ=0.252, P=0.002), neutrophil-to-lymphocyte ratio (ρ=0.369, P<0.001), IL-6 (ρ=0.192, P=0.016), and creatinine (ρ=0.323, P<0.001) were positively correlated with the time of SARS-CoV-2 nucleic acid negative conversion, while aspartate aminotransferase (ρ=-0.278, P<0.001), lactate dehydrogenase (ρ=-0.175, P=0.029), activated partial thromboplastin time (ρ=-0.162, P=0.044), D-dimer (ρ=-0.331, P<0.001) and anti-SARS-CoV-2 IgG (ρ=-0.278, P<0.001) were negatively correlated with the time of SARS-CoV-2 nucleic acid negative conversion, all with significant differences. The multiple linear regression model showed that the model was significant as a whole (F=7.016, P<0.001), and this model could explain 43.4% of the variation in SARS-CoV-2 nucleic acid negative conversion (R2=0.434). Whether having symptoms (β=0.263, 95%CI: 0.873-6.513, P=0.011) and pharyngeal discomfort (β=0.153, 95%CI: 0.029-2.603, P=0.045) were independent risk factors for delayed SARS-CoV-2 nucleic acid negative conversion, and the level of anti-SARS-CoV-2 IgG (β=-0.209, 95%CI: -0.022-0.002, P=0.022) was an independent protective factor for shortened SARS-CoV-2 nucleic acid negative conversion time.

Conclusions

During the Omicron epidemic, the clinical manifestations of children infected with SARS-CoV-2 were mainly mild, and the clinical features were closely related to age. Presence of symptoms and sore throat could prolong the time of SARS-CoV-2 nucleic acid negativity, while high level of SARS-CoV-2 IgG antibody could help shorten the conversion time to negativity. Individualized management of children in different age groups should be emphasized, and the value of vaccination and antibody monitoring in prognosis assessment should be highlighted.

表1 不同年龄组感染SARS-CoV-2患儿的一般资料
表2 不同年龄组感染SARS-CoV-2患儿的临床症状
表3 不同年龄组感染SARS-CoV-2患儿的实验室指标
指标 <7岁组(24例) 7~12岁组(36例) >12岁组(95例) 统计量 P
WBC降低 [例(%)] 1(4.17) 7(19.44) 17(17.89) χ2=3.050 0.218a
NEU升高 [例(%)] 2(8.33) 0(0.00) 5(5.26) 0.223b
LYM降低 [例(%)] 12(50.00) 23(63.89) 57(60.00) χ2=1.194 0.551a
CRP升高 [例(%)] 9(37.50) 15(41.67) 29(30.53) χ2=1.578 0.454a
PCT升高 [例(%)] 3(12.50) 1(2.78) 2(2.11) 0.085b
SAA升高 [例(%)] 18(75.00) 27(75.00) 67(70.53) χ2=0.367 0.832a
IL-6升高 [例(%)] 18(75.00) 26(72.22) 45(47.37) χ2=10.186 0.006a
ALT升高 [例(%)] 0(0.00) 3(8.33) 7(7.37) 0.465b
AST升高 [例(%)] 1(4.17) 1(2.78) 6(6.32) 0.873b
UREA升高 [例(%)] 1(4.17) 0(0.00) 4(4.21) 0.540b
CREA升高 [例(%)] 2(8.33) 3(8.33) 6(6.32) 0.738b
LDH [MP25P75),U/L] 275.35(215.45,320.10) 237.35(205.57,260.15) 182.15(161.00,215.00) H=42.137 <0.001
CK-MB [MP25P75),U/L] 20.65(13.98,25.50) 19.65(16.23,21.98) 17.40(15.30,21.10) H=5.657 0.059
PT [MP25P75),s] 13.15(11.73,13.98) 12.50(12.10,13.40) 12.5(11.88,13.63) H=0.148 0.929
PTA [MP25P75),%] 76.00(70.25,89.75) 80.00(73.25,85.00) 80.00(71.00,86.25) H=0.116 0.944
APTT [MP25P75),s] 34.95(32.20,37.80) 33.60(31.78,35.88) 32.60(30.80,35.15) H=5.869 0.053
FIB [MP25P75),mg/dl] 266.00(219.50,334.00) 300.00(262.75,364.50) 302.00(268.00,352.00) H=4.872 0.087
FDP [MP25P75),μg/ml] 1.55(1.20,1.97) 1.80(1.63,2.02) 1.79(1.24,2.17) H=3.573 0.168
DD [MP25P75),μg/ml] 0.49(0.33,0.76) 0.36(0.25,0.87) 0.25(0.18,0.49) H=14.321 0.001
TT [MP25P75),s] 15.40(14.43,16.58) 15.05(13.73,15.98) 14.80(14.00,15.50) H=4.123 0.122
ORF1ab基因Ct值 [MP25P75)] 30.42(23.46,34.04) 30.07(22.85,36.46) 23.80(20.56,29.30) H=11.006 0.004
N基因Ct值 [MP25P75)] 27.59(22.53,32.60) 27.90(21.33,34.44) 21.92(17.98,26.41) H=16.067 <0.001
抗-SARS-CoV-2 IgM [MP25P75),S/CO] 0.05(0.02,0.07) 0.06(0.03,0.11) 0.05(0.04,0.10) H=4.584 0.101
抗-SARS-CoV-2 IgG [MP25P75),S/CO] 0.81(0.03,14.58) 3.32(1.57,8.28) 1.36(0.58,4.18) H=8.003 0.018
表4 与感染SARS-CoV-2患儿核酸转阴时间相关指标
表5 感染SARS-CoV-2患儿核酸转阴时间影响因素的多元线性回归分析
[1]
Feng Z, Huo D, Cui S, et al. Epidemiological features, genomic characteristics, and origin tracing of the COVID-19 outbreaks in Beijing from January to September 2022[J]. J Med Virol,2023,95(3):e28613.
[2]
Sacco K, Castagnoli R, Vakkilainen S, et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19[J]. Nat Med,2022,28(5):1050-1062.
[3]
Zhang J, Sun J, Li D, et al. Clinical characteristics and genetic analysis of children with Omicron BF. 7. 14 type novel coronavirus-related acute necrotizing encephalopathy[J]. Front Neurol,2024,15:1365299.
[4]
黄大彬, 梁振宇, 张晓, 等. 2022年广州地区家庭聚集性儿童新型冠状病毒Omicron变异株感染的临床特征[J]. 分子影像学杂志,2023,46(5):924-929.
[5]
国家卫生健康委员会办公厅, 国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版)[EB/OL]. 2022-03-14. 
[6]
国家卫生健康委员会. 关于发布《儿童血细胞分析参考区间》等3项推荐性卫生行业标准的通告[EB/OL]. 2021-05-17. 
[7]
He Y, Liu WJ, Jia N, et al. Viral respiratory infections in a rapidly changing climate: the need to prepare for the next pandemic[J]. EBioMedicine,2023,93:104593.
[8]
Du H, Li J, Wen H, et al. Respiratory pathogen profiles of patients-Beijing Municipality, China, November 2023-April 2024[J]. China CDC Wkly,2023,7(4):113-120.
[9]
Maslo C, Friedland R, Toubkin M, et al. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 Omicron wave compared with previous waves[J]. J Am Med Assoc, 2022,327(6):583-584.
[10]
Zhu Y, Almeida FJ, Baillie JK, et al. International pediatric COVID-19 severity over the course of the pandemic[J]. JAMA Pediatr, 2023,177(10):1073-1084.
[11]
‌陈玉清, 李金明.‌ Omicron变异株病毒学特征: 关键突变, 致病性, 免疫逃逸[J]. 协和医学杂志,2023,44(5):1-8.
[12]
Zhao Y, Zhao W, Wang A, et al. First case of coronavirus disease 2019 in childhood leukemia in China[J]. Pediatr Infect Dis J,2020, 39(7):e142-e145.
[13]
Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway[J]. Nat Microbiol,2022,7(8):1161-1179.
[14]
Sha J, Meng C, Sun J, et al. Clinical and upper airway characteristics of 3715 patients with the Omicron variant of SARS-Cov-2 in Changchun, China[J]. J Infect Public Heal,2023,16(3):422-429.
[15]
张苡菲, 梁世山, 吴沛霖, 等. 201例儿童新型冠状病毒Omicron变异株感染的临床特征分析[J]. 中国当代儿科杂志,2023,25(1):5-10.
[16]
罗利萍, 刘斌, 李正汉, 等. 不同年龄段新型冠状病毒奥密克戎变异株感染轻症患者临床症状及核酸转阴时间特点[J]. 国际检验医学杂志,2023,44(15):1895-1901.
[17]
Zhao Y, Sun L, Bouchard HC, et al. Coronavirus disease 2019 versus influenza A in Children: An observational control study in China[J]. Biomed Environ Sci,2020,33(8):614-619.
[18]
Peng Y, Shi Y, Zhu W, et al. Comparison of clinical and para-clinical characteristics between children and adults with the Omicron variant of COVID-19[J]. J Infect Dev Ctries,2024,18(10):1494-1501.
[19]
卞相丽, 国志, 张坤, 等. 上海380例家庭聚集性感染Omicron变异株的儿童及其家属临床特征分析[J]. 中国当代儿科杂志,2022,24(10):1085-1091.
[20]
Wurm J, Uka A, Bernet V, et al. The changing clinical presentation of COVID-19 in children during the course of the pandemic[J]. Acta Paediatr,2024,113(4):771-777.
[21]
Shoji K, Akiyama T, Tsuzuki S, et al. Clinical characteristics of COVID-19 in hospitalized children during the Omicron variant predominant period[J]. J Infect Chemother,2022,28(11):1531-1535.
[22]
孟一星, 黄辉, 邓莉. 新型冠状病毒感染儿童皮肤损害[J/CD]. 中华实验和临床感染病杂志(电子版),2021,15(6):374-378.
[23]
Wurm J, Ritz N, Zimmermann P. Coronavirus disease 2019 (COVID-19) in children: Evolving epidemiology, immunology, symptoms, diagnostics, treatment, post-COVID-19 conditions, prevention strategies, and future directions[J]. J Allergy Clin Immunol,2025,155(4):1071-1081.
[24]
Yoshida M, Worlock KB, Huang N, et al. Local and systemic responses to SARS-CoV-2 infection in children and adults[J]. Nature,2022,602(7896):321-327.
[25]
Wimmers F, Burrell AR, Feng Y, et al. Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth[J]. Cell,2023,186(21):4632-4651.
[26]
Zhong Y, Kang AYH, Tay CJX, et al. Correlates of protection against symptomatic SARS-CoV-2 in vaccinated children[J]. Nat Med,2024,30(5):1373-1383.
[27]
Yang Y, You Y, Liu Y, et al. Factors associated with negative conversion of viral RNA in hospitalized children infected with SARS-CoV-2 Omicron variant in Shanghai, China: a retrospective analysis[J]. BMC Infect Dis,2023,23(1):264.
[28]
殷荣, 陆权, 焦佳丽, 等. 儿童新型冠状病毒Omicron变异株感染病毒核酸转阴特点及其影响因素[J]. 中华儿科杂志,2022,60(12): 1307-1311.
[29]
秦凤, 丁博, 陈轶维, 等. 影响Omicron变异株感染轻型和普通型COVID-19患儿核酸转阴时间缩短因素分析[J/CD]. 中华妇幼临床医学杂志(电子版),2022,18(6):669-676.
[30]
蒋荣猛, 谢正德, 姜毅, 等. 儿童新型冠状病毒感染诊断, 治疗和预防专家共识(第五版)[J]. 中华实用儿科临床杂志,2023,38(1): 20-30.
[1] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[2] 石楠楠, 杨蒙, 张庆富. 颈部深Ⅱ度烧伤非手术治疗患者创面愈合的影响因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 28-33.
[3] 罗旭芳, 王艳子, 滕红娜, 赵德莉, 袁丽, 靳思雨, 官浩. 基于时机理论对重度烧伤患儿照护者照护体验的质性研究[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 40-46.
[4] 李可, 徐航. 单侧腺叶切除治疗结节性甲状腺肿的疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 55-58.
[5] 熊海波, 张千秋, 李叔强, 曾云龙, 邓力宾, 袁家天, 吕波, 李俊. 经脐单孔和双孔腹腔镜下治疗小儿腹股沟疝疗效的Meta分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 694-700.
[6] 高成立, 何凯明, 冯啸, 曾凯宁, 唐晖, 姚嘉, 杨卿, 易慧敏, 易述红, 杨扬, 傅斌生. 肝移植治疗儿童遗传代谢性肝病安全性及疗效:单中心44例分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 844-851.
[7] 闫学丽, 孔德莹, 胡颖辉, 向俊西. 原位肝移植术后即时并发症发生情况及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 894-901.
[8] 董艳, 郭继武, 毛杰. 儿童重症急性胰腺炎一例诊治分析并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 956-961.
[9] 荣锦, 骆明星, 王禹, 刘婷婷, 张宏斌. 全膝关节置换术后慢性疼痛影响因素的多种模型预测性能比较[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 337-344.
[10] 孙太鹏, 袁勇贵. 儿童青少年精神卫生服务的现状与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 805-808.
[11] 洪素, 况利. ICD-11 CDDR框架下的实践参考:儿童青少年心境障碍[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 814-817.
[12] 陈妍, 陈珏. ICD-11 CDDR框架下的实践参考:儿童青少年心身疾病[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 818-822.
[13] 杜琳, 贾飞勇. 儿童青少年抑郁障碍的多因素病因研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 854-859.
[14] 高鉴兴, 马晶晶, 夏洁, 柯晓燕, 方慧. 儿童青少年首次抑郁发作的临床特征及非自杀性自伤的影响因素[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 633-641.
[15] 高怀军, 余伟. 嵌顿性腹股沟疝患者急诊腹腔镜术后预后不良的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 356-360.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?