切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 327 -334. doi: 10.3877/cma.j.issn.1674-1358.2025.06.002

综述

急性呼吸窘迫综合征细胞治疗机制及临床应用研究进展
陈静, 曲东(), 刘霜   
  1. 100020 北京,首都医科大学附属首都儿童医学中心,首都儿科研究所
  • 收稿日期:2025-04-08 出版日期:2025-12-15
  • 通信作者: 曲东
  • 基金资助:
    首都儿科研究所所级课题(JHYJ-2025-04); 首都儿科研究所所级课题(XZDX-2025-026)

Research progress on the mechanism and clinical application of cellular therapy for acute respiratory distress syndrome

Jing Chen, Dong Qu(), Shuang Liu   

  1. Capital Center for Children’s Health, Capital Medical University, Capital Institute of Pediatrics, Beijing 100020, China
  • Received:2025-04-08 Published:2025-12-15
  • Corresponding author: Dong Qu
引用本文:

陈静, 曲东, 刘霜. 急性呼吸窘迫综合征细胞治疗机制及临床应用研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(06): 327-334.

Jing Chen, Dong Qu, Shuang Liu. Research progress on the mechanism and clinical application of cellular therapy for acute respiratory distress syndrome[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2025, 19(06): 327-334.

急性呼吸窘迫综合征(ARDS)是多病因引发的严重急性弥漫性炎症性肺损伤,以肺泡-毛细血管屏障破坏、肺水肿及低氧血症为特征,重症患者病死率高达35%~50%。当前治疗主要依赖机械通气与药物支持,但对肺泡-毛细血管屏障不可逆损伤尚缺乏特异性疗法,亟需探索新策略。细胞治疗凭借多重靶向作用已成为ARDS研究焦点。免疫调节:间充质干细胞(MSCs)和诱导多能干细胞(iPSCs)等通过分泌抗炎因子,如前列腺素E2(PGE2)、白细胞介素(IL)-10抑制核转录因子-κB(NF-κB)通路,降低肿瘤坏死因子-α(TNF-α)、IL-6等促炎因子水平,并调节免疫细胞平衡,减轻过度炎症反应;抗氧化应激:MSCs及外泌体通过激活Nrf2-ARE通路恢复线粒体功能,减少活性氧生成,缓解氧化损伤;组织修复:MSCs通过Wnt/β-catenin通路促进肺泡与血管内皮细胞增殖迁移,内皮祖细胞归巢修复血管内皮,降低通透性;抗纤维化与抗凋亡:MSCs分泌肝细胞生长因子抑制TGF-β/Smad通路,减少肌成纤维细胞活化,外泌体传递miRNAs抑制肺泡上皮细胞焦亡,延缓纤维化进程。针对新型冠状病毒肺炎相关ARDS的临床研究证实,MSCs、外泌体及调节性T细胞可有效调控炎症、改善氧合;脐带血及免疫-基质调节细胞等联合标准治疗亦展现协同潜力。但细胞治疗仍面临多重挑战:疗效异质性:受细胞来源、剂量、输注时机及患者基线病情影响,长期预后数据有限;安全风险:需警惕微栓塞、iPSCs致瘤性及免疫原性问题;技术瓶颈:细胞扩增、冻存及质控标准尚未统一,核心机制仍待阐明。本文系统综述了ARDS发病机制及细胞治疗的基础及临床研究进展,旨在为其治疗提供新思路。

Acute respiratory distress syndrome (ARDS) is a severe, acute and diffuse inflammatory lung injury arising from multiple etiologies, characterized by alveolar-capillary barrier disruption, pulmonary edema and hypoxemia, with mortality rates ranging from 35% to 50% among critically ill patients. Current management primarily relies on mechanical ventilation and supportive pharmacotherapy; however, there remains a lack of specific therapies for irreversible alveolar-capillary barrier damage, underscoring an urgent need for novel therapeutic strategies. Cellular therapy has emerged as a key focus in ARDS research owing to its multi-targeted actions: in terms of immunomodulation, mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) secrete anti-inflammatory factors such as prostaglandin E2 (PGE2) and interleukin (IL)-10, which inhibit the nuclear factor-κB (NF-κB) pathway, reduce levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and IL-6, and regulate immune cell homeostasis to mitigate excessive inflammatory responses; for antioxidative stress, MSCs and their exosomes restore mitochondrial function by activating the Nrf2-ARE pathway, diminish reactive oxygen species production and alleviate oxidative damage; regarding tissue repair, MSCs promote the proliferation and migration of alveolar epithelial cells and vascular endothelial cells via the Wnt/β-catenin pathway, while endothelial progenitor cells home to the injury site to repair the vascular endothelium and reduce vascular permeability; in relation to antifibrotic and anti-apoptotic effects, MSCs secrete hepatocyte growth factor to inhibit the TGF-β/Smad pathway and reduce myofibroblast activation, and exosomes deliver miRNAs to suppress alveolar epithelial pyroptosis and delay the fibrotic process. Clinical studies on corona virus disease 2019 (COVID-19)-associated ARDS have confirmed that MSCs, exosomes and regulatory T cells can effectively modulate inflammation and improve oxygenation, while umbilical cord blood, immunity-and-matrix regulatory cells and other cellular products, when combined with standard treatments, have demonstrated synergistic therapeutic potential. Nevertheless, cellular therapy for ARDS faces multiple challenges: therapeutic outcomes are influenced by cell source, dosage, timing of administration and patients’ baseline conditions, with limited long-term prognostic data available; safety concerns include microembolism, the tumorigenicity of iPSCs and immunogenicity issues; and standards for cell expansion, cryopreservation and quality control remain unstandardized, while the core mechanisms underlying therapeutic effects await further clarification. This article systematically reviews the pathogenesis of ARDS and advances in basic and clinical research on cellular therapy, aiming to provide new insights for future treatment strategies.

表1 不同来源细胞治疗ARDS优缺点
细胞类型 来源 优点 缺点
胚胎干细胞
(ESCs)
早期胚胎(囊胚期)的内细胞团 全能分化潜能,生成功能性肺组织 伦理争议大,临床转化受限;免疫原性高,需配型或基因编辑;未分化细胞残留风险,可能致瘤
诱导多能干细胞
(iPSCs)
成体细胞(如皮肤成纤维细胞、血液细胞)通过基因重编程获得 个体化、无伦理争议,具有无限增殖能力和分化为多种细胞类型的能力 基因编辑潜在风险(如基因突变)、分化效率低、未分化细胞残留致瘤性未完全排除、成本高
间充质干细胞
(MSCs)
骨髓、脂肪组织、胎盘、脐带血(贴壁培养分离) 来源广泛,免疫原性低,具有多向分化潜能和免疫调节能力 标准化生产、长期安全性
外泌体 几乎所有细胞(如干细胞、免疫细胞)分泌的脂质囊泡 来源广泛,靶向性强 机制尚不明确、量产困难
内皮祖细胞
(EPCs)
骨髓、脐带血、血管内皮细胞或外周血 血管再生能力,可促进血管新生,修复受损血管内皮、修复血管内皮,降低通透性 外周血来源稀少,获取难度大;单独应用疗效有限,需与其他细胞联合;长期血管稳定性证据不足
调节性T细胞
(Tregs)
胸腺发育的 CD4+CD25+ T细胞、脐带血分选+体外扩增(异体)、外周血诱导(自体) 精准抑制过度免疫激活,调节Th1/Th17平衡;特异性减轻肺部炎症,不影响抗病毒免疫;异体移植免疫排斥风险低 体外扩增难度大,成本高;作用时效短,需多次输注;临床数据有限(仅限COVID-19等部分研究)
[1]
LDJ B, LB W. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes[J]. Lancet (London, England),2022,400(10358): 1145-1156.
[2]
张立成, 张锦前, 郭利民, 等. 重症甲型H1N1流感并发急性呼吸窘迫综合征的临床特点及危险因素分析[J/CD]. 中华实验和临床感染病杂志(电子版),2014,8(3):22-27.
[3]
Cardenes N, Aranda-Valderrama P, Carney JP, et al. Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model[J]. BMJ Open Respir Res,2019,6(1):e000308.
[4]
Qiao X, Yin J, Zheng Z, et al. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications[J]. Cell Commun Signal, 2024,22(1):241.
[5]
Vassiliou AG, Kotanidou A, Dimopoulou I, et al. Endothelial damage in acute respiratory distress syndrome[J]. Int J Mol Sci,2020, 21(22):8793.
[6]
Chen MC, Lai KSL, Chien KL, et al. pcMSC modulates immune dysregulation in patients with COVID-19-induced refractory acute lung injury[J]. Front Immunol,2022,13:871828.
[7]
Borek I, Birnuber A, Voelkel NF, et al. The vascular perspective on acute and chronic lung disease[J]. J Clin Invest,2023,133(16):e170502.
[8]
Wu X, Tang Y, Lu X, et al. Endothelial cell-derived extracellular vesicles modulate the therapeutic efficacy of mesenchymal stem cells through IDH2/TET pathway in ARDS[J]. Cell Commun Signal,2024,22(1):293.
[9]
Faust HE, Reilly JP, Anderson BJ, et al. Plasma mitochondrial DNA levels are associated with ARDS in trauma and sepsis patients[J]. Chest,2020,157(1):67-76.
[10]
McClintock CR, Mulholland N, Krasnodembskaya AD. Biomarkers of mitochondrial dysfunction in acute respiratory distress syndrome: A systematic review and Meta-analysis[J]. Front Med,2022,9:1011819.
[11]
李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J/CD]. 中华实验和临床感染病杂志(电子版),2023,17(5):294-298.
[12]
Zhu F, Wang J, Qiu X, et al. Smoke inhalation injury repaired by a bone marrow-derived mesenchymal stem cell paracrine mechanism: Angiogenesis involving the Notch signaling pathway[J]. J Trauma Acute Care Surg,2015,78(3):565-572.
[13]
Mao GC, Gong CC, Wang Z, et al. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A-YAP axis[J]. Acta Pharmacol Sin,2021,42(12):2082-2093.
[14]
Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury[J]. Ann Am Thorac Soc,2015,12(Suppl 1):S3-S8.
[15]
Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med,2020, 383(23):2255-2273.
[16]
Yu Q, Zhou X, Kapini R, et al. Cytokine storm in COVID-19: Insight into pathological mechanisms and therapeutic benefits of Chinese herbal medicines[J]. Medicines (Basel),2024,11(7):14.
[17]
Wu J, Song D, Li Z, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis[J]. Cell Res,2020,30(9):794-809.
[18]
Wann SR, Chi PL, Huang WC, et al. Combination therapy of iPSC-derived conditioned medium with ceftriaxone alleviates bacteria-induced lung injury by targeting the NLRP3 inflammasome[J]. J Cell Physiol,2022,237(2):1299-1314.
[19]
Su VYF, Chiou SH, Chen WC, et al. Induced pluripotent stem cell-derived conditioned medium promotes endogenous leukemia inhibitory factor to attenuate endotoxin-induced acute lung injury[J]. Int J Mol Sci,2021,22(11):5554.
[20]
Li LF, Chang YL, Chen NH, et al. Inhibition of Src and forkhead box O1 signaling by induced pluripotent stem-cell therapy attenuates hyperoxia-augmented ventilator-induced diaphragm dysfunction[J]. Transl Res,2016,173:131-147. e1.
[21]
Liu YY, Li LF, Fu JY, et al. Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway[J]. PLoS One,2014,9(10): e109953.
[22]
Li LF, Liu YY, Yang CT, et al. Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3K/Akt pathway and IP-10-dependent paracrine regulation[J]. Biomaterials,2013,34(1):78-91.
[23]
Yudhawati R, Shimizu K. PGE2 produced by exogenous MSCs promotes immunoregulation in ARDS induced by highly pathogenic influenza A through activation of the Wnt-β-Catenin signaling pathway[J]. Int J Mol Sci,2023,24(8):7299.
[24]
Luo Y, Lin S, Mao X, et al. Overexpression of FoxM1 enhanced the protective effect of bone marrow-derived mesenchymal stem cells on lipopolysaccharide-induced acute lung injury through the activation of Wnt/β-Catenin signaling[J]. Oxid Med Cell Longev,2023, 2023:8324504.
[25]
Lin S, Chen Q, Zhang L, et al. Overexpression of HOXB4 promotes protection of bone marrow mesenchymal stem cells against lipopolysaccharide-induced acute lung injury partially through the activation of Wnt/β-Catenin signaling[J]. J Inflamm Res,2021,14: 3637-3649.
[26]
Jin C, Zhou F, Zhang L, et al. Overexpression of heat shock protein 70 enhanced mesenchymal stem cell treatment efficacy in phosgene-induced acute lung injury[J]. J Biochem Mol Toxicol,2020,34(8): e22515.
[27]
Lu Z, Meng S, Chang W, et al. Mesenchymal stem cells activate Notch signaling to induce regulatory dendritic cells in LPS-induced acute lung injury[J]. J Transl Med,2020,18(1):241.
[28]
Lu Z, Chang W, Meng S, et al. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury[J]. Stem Cell Res Ther,2019,10(1):372.
[29]
Harrell CR, Jovicic BP, Djonov V, et al. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of SARS-CoV-2-induced acute respiratory distress syndrome[J]. Anal Cell Pathol (Amst),2020,2020:1939768.
[30]
Zhang L, Li Q, Liu W, et al. Mesenchymal stem cells alleviate acute lung injury and inflammatory responses induced by paraquat poisoning[J]. Med Sci Monit,2019,25:2623-2632.
[31]
Lin KC, Yeh JN, Chen YL, et al. Xenogeneic and allogeneic mesenchymal stem cells effectively protect the lung against ischemia-reperfusion injury through downregulating the inflammatory, oxidative stress, and autophagic signaling pathways in rat[J]. Cell Transplant,2020,29:963689720954140.
[32]
Xia L, Zhang C, Lv N, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J]. Theranostics,2022, 12(6):2928-2947.
[33]
Chen J, Li C, Liang Z, et al. Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway[J]. Cytotherapy, 2021,23(10):918-930.
[34]
Gazdhar A, Ravikumar P, Pastor J, et al. Alpha-Klotho enrichment in induced pluripotent stem cell secretome contributes to antioxidative protection in acute lung injury[J]. Stem Cells (Dayton, Ohio),2018, 36(4):616-625.
[35]
Sadeghian Chaleshtori S, Dezfouli MRM, Dehghan MM, et al. Generation of lung and airway epithelial cells from embryonic stem cells in vitro[J]. Crit Rev Eukaryot Gene Expr,2016,26(1):1-9.
[36]
Chen J, Li Y, Hao H, et al. Mesenchymal stem cell conditioned medium promotes proliferation and migration of alveolar epithelial cells under septic conditions in vitro via the JNK-P38 signaling pathway[J]. Cell Physiol Biochem,2015,37(5):1830-1846.
[37]
Bouland C, Philippart P, Dequanter D, et al. Cross-talk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in bone regeneration[J]. Front Cell Dev Biol,2021,9:674084.
[38]
Sueblinvong V, Weiss DJ. Acute lung injury: Endothelial progenitor cells to the rescue?[J]. Am J Med Sci,2019,357(1):1-2.
[39]
Yin X, Liang Z, Yun Y, et al. Intravenous transplantation of BMP2-transduced endothelial progenitor cells attenuates lipopolysaccharide-induced acute lung injury in rats[J]. Cell Physiol Biochem,2015, 35(6):2149-2158.
[40]
Wu X, Liu Z, Hu L, et al. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126[J]. Exp Cell Res,2018,370(1):13-23.
[41]
Su VYF, Yang KY, Chiou SH, et al. Induced pluripotent stem cells regulate triggering receptor expressed on myeloid cell-1 expression and the p38 mitogen-activated protein kinase pathway in endotoxin-induced acute lung injury[J]. Stem Cells (Dayton, Ohio),2019,37(5):631-639.
[42]
Ge S, He W, Zhang L, et al. Ghrelin pretreatment enhanced the protective effect of bone marrow-derived mesenchymal stem cell-conditioned medium on lipopolysaccharide-induced endothelial cell injury[J]. Mol Cell Endocrinol,2022,548:111612.
[43]
Meng SS, Guo FM, Huang LL, et al. mTORC2 activation mediated by mesenchymal stem cell-secreted hepatocyte growth factors for the recovery of lipopolysaccharide-induced vascular endothelial barrier[J]. Stem Cells Int,2021,2021:9981589.
[44]
Meng SS, Guo FM, Zhang XW, et al. mTOR/STAT-3 pathway mediates mesenchymal stem cell-secreted hepatocyte growth factor protective effects against lipopolysaccharide-induced vascular endothelial barrier dysfunction and apoptosis[J]. J Cell Biochem,2019, 120(3):3637-3650.
[45]
Su VYF, Lin CS, Hung SC, et al. Mesenchymal stem cell-conditioned medium induces neutrophil apoptosis associated with inhibition of the NF-κB pathway in endotoxin-induced acute lung injury[J]. Int J Mol Sci,2019,20(9):2208.
[46]
Zhang M, Xu G, Zhou X, et al. Mesenchymal stem cells ameliorate H9N2-induced acute lung injury by inhibiting caspase-3-GSDME-mediated pyroptosis of lung alveolar epithelial cells[J]. Eur J Pharmacol,2023,960:176148.
[47]
Liu P, Yang S, Shao X, et al. Mesenchymal stem cells-derived exosomes alleviate acute lung injury by inhibiting alveolar macrophage pyroptosis[J]. Stem Cells Transl Med,2024,13(4):371-386.
[48]
Tao Y, Xu X, Yang B, et al. Mitigation of sepsis-induced acute lung injury by BMSC-derived exosomal miR-125b-5p through STAT3-mediated suppression of macrophage pyroptosis[J]. Int J Nanomedicine, 2023,18:7095-7113.
[49]
Saito A, Horie M, Nagase T. TGF-β signaling in lung health and disease[J]. Int J Mol Sci,2018,19(8):2460.
[50]
Vishnupriya M, Naveenkumar M, Manjima K, et al. Post-COVID pulmonary fibrosis: therapeutic efficacy using with mesenchymal stem cells - How the lung heals[J]. Eur Rev Med Pharmacol Sci,2021,25(6):2748-2751.
[51]
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact,2018,292:76-83.
[52]
Xiao K, He W, Guan W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury[J]. Cell Death Dis,2020,11(10):863.
[53]
Lightner AL, Sengupta V, Qian S, et al. Bone marrow mesenchymal stem cell-derived extracellular vesicle infusion for the treatment of respiratory failure from COVID-19: A randomized, placebo-controlled dosing clinical trial[J]. Chest,2023,164(6):1444-1453.
[54]
Wang D, Morales JE, Calame DG, et al. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice[J]. Mol Ther,2010,18(3):625-634.
[55]
Song D, Li Z, Sun F, et al. Optimized administration of human embryonic stem cell-derived immunity-and-matrix regulatory cells for mouse lung injury and fibrosis[J]. Stem Cell Res Ther,2024,15(1):344.
[56]
Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial[J]. Stem Cells Transl Med,2021,10(5):660-673.
[57]
Monsel A, Hauw-Berlemont C, Mebarki M, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial[J]. Crit Care (London, England),2022,26(1):48.
[58]
Lightner AL, Sengupta V, Qian S, et al. Bone marrow mesenchymal stem cell-derived extracellular vesicle infusion for the treatment of respiratory failure from COVID-19: A randomized, placebo-controlled dosing clinical trial[J]. Chest,2023,164(6):1444-1453.
[59]
Zamanian MH, Norooznezhad AH, Hosseinkhani Z, et al. Human placental mesenchymal stromal cell-derived small extracellular vesicles as a treatment for severe COVID-19: A double-blind randomized controlled clinical trial[J]. J Extracell Vesicles,2024,13(7): e12492.
[60]
Gladstone DE, D’Alessio F, Howard C, et al. Randomized, double-blinded, placebo-controlled trial of allogeneic cord blood T-regulatory cells for treatment of COVID-19 ARDS[J]. Blood Adv,2023,7(13):3075-3079.
[61]
Kim K, Bae KS, Kim HS, et al. Effectiveness of mesenchymal stem cell therapy for COVID-19-induced ARDS patients: A case report[J]. Medicina (Kaunas),2022,58(12):1698.
[62]
Grégoire C, Layios N, Lambermont B, et al. Bone marrow-derived mesenchymal stromal cell therapy in severe COVID-19: Preliminary results of a phase Ⅰ/Ⅱ clinical trial[J]. Front Immunol,2022,13: 932360.
[63]
Liu S, Shen H, Huang S, et al. First case of low-dose umbilical cord blood therapy for pediatric acute respiratory distress syndrome induced by Pneumocystis carinii pneumonia[J]. Eur J Med Res, 2021,26(1):100.
[64]
Bellingan G, Jacono F, Bannard-Smith J, et al. Safety and efficacy of multipotent adult progenitor cells in acute respiratory distress syndrome (MUST-ARDS): a multicentre, randomised, double-blind, placebo-controlled phase 1/2 trial[J]. Intensive Care Med,2022, 48(1):36-44.
[65]
Ichikado K, Kotani T, Kondoh Y, et al. Clinical efficacy and safety of multipotent adult progenitor cells (invimestrocel) for acute respiratory distress syndrome (ARDS) caused by pneumonia: a randomized, open-label, standard therapy-controlled, phase 2 multicenter study (ONE-BRIDGE)[J]. Stem Cell Res Ther,2023,14(1):217.
[66]
Bowdish ME, Barkauskas CE, Overbey JR, et al. A randomized trial of mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome from COVID-19[J]. Am J Respir Crit Care Med,2023,207(3):261-270.
[67]
Lightner AL, Sengupta V, Qian S, et al. Bone marrow mesenchymal stem cell-derived extracellular vesicle infusion for the treatment of respiratory failure from COVID-19: A randomized, placebo-controlled dosing clinical trial[J]. Chest,2023,164(6):1444-1453.
[68]
Monsel A, Hauw-Berlemont C, Mebarki M, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial[J]. Crit Care (London, England),2022,26(1):48.
[69]
Sitbon A, Hauw-Berlemont C, Mebarki M, et al. Treatment of COVID-19-associated ARDS with umbilical cord-derived mesenchymal stromal cells in the STROMA-CoV-2 multicenter randomized double-blind trial: long-term safety, respiratory function, and quality of life[J]. Stem Cell Res Ther,2024,15(1):109.
[70]
Martínez-Muñoz ME, Payares-Herrera C, Lipperheide I, et al. Mesenchymal stromal cell therapy for COVID-19 acute respiratory distress syndrome: a double-blind randomised controlled trial[J]. Bone Marrow Transplant,2024,59(6):777-784.
[71]
Zarrabi M, Shahrbaf MA, Nouri M, et al. Allogenic mesenchymal stromal cells and their extracellular vesicles in COVID-19 induced ARDS: a randomized controlled trial[J]. Stem Cell Res Ther,2023, 14(1):169.
[72]
Fernández-Francos S, Eiro N, González-Galiano N, et al. Mesenchymal stem cell-based therapy as an alternative to the treatment of acute respiratory distress syndrome: Current evidence and future perspectives[J]. Int J Mol Sci,2021,22(15):7850.
[1] 刘恒, 何亦龙, 袁蕊, 刘燕燕, 卢帅, 公茂琪, 查晔军, 蒋协远. 免疫与基质调节细胞治疗创伤性异位骨化的实验研究[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 47-53.
[2] 潘子杭, 杨丽华, 孙轶群, 丁美军, 薛珂. 表皮干细胞来源外泌体在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 58-62.
[3] 李俊涛, 刘贵华, 何子勤, 马朦惠, 赵阳杰, 肖楚天, 张翼飞, 颜禄斌, 梁晓燕, 王德娟. 单侧睾丸部分切除术在青春期前男孩生育力保存中的应用探索[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 759-764.
[4] 吴蓉, 蔡喆燚, 黄运华, 乐金海, 张萍, 陈献, 易琼. 跨肺驱动压导向呼气末正压通气对急性呼吸窘迫综合征患者肺功能及预后的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 866-871.
[5] 曾慧, 刘朝朝, 牛雷, 邓雅洁, 徐礼霞, 沙莎. 早期肺腺癌血清外泌体miRNA特征谱及诊断标志物筛选研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 891-896.
[6] 沈方龙, 伍正彬, 邵世锋, 陈地友, 肖钦, 郝志鹏, 王震, 赵辉, 王耀丽. 急性呼吸窘迫综合征患者的生物电阻抗断层成像特征及预测研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 897-903.
[7] 刘雅文, 孙延虎, 许晓函, 李岳, 王旭东. 电阻抗断层成像技术指导滴定呼气末正压通气治疗急性呼吸窘迫综合征患者的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 966-972.
[8] 马彬, 王启超, 王圣元, 赵虎林, 沈玥. 俯卧位通气管理在59例重症肺炎患者中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 1012-1014.
[9] 崔琳琳, 薛来恩, 付云烽, 王君竹, 郑和平, 路君, 徐永君. 大鼠羊膜间充质干细胞对STZ损伤的大鼠胰岛修复作用研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 321-328.
[10] 郑学真, 雷关芝, 张晓月, 姜一帆, 王兆朋, 王丹丹, 张月英, 周芳, 吴志成. MHC不相合与H-2单倍体相合造血干细胞移植建立急性移植物抗宿主病小鼠模型的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 329-338.
[11] 潘志浩, 易昕, 王裕康, 王洁, 周振宇, 王淑芳. 胰岛细胞包封技术治疗糖尿病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 354-360.
[12] 刘丽丽, 王玮, 张志华. 人脐带间充质干细胞治疗神经系统疾病的机制及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 368-373.
[13] 张宇坤, 王春林, 周珉玮, 李震洋, 周易明, 顾晓冬, 项建斌. 放疗诱导微卫星稳定型结直肠癌细胞外泌体成分变化及其增强CD8+T细胞功能的体外研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 526-532.
[14] 王兆彤, 王美琴, 陈磊, 王莹莹, 吴军, 苑小历. 重复性经颅磁刺激与外泌体:抑郁症治疗研究的新视角[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 866-870.
[15] 彭坤, 冯辉斌, 袁利学. 急性有机磷农药中毒并发急性呼吸窘迫综合征的危险因素相关性[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 668-674.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?