切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 321 -326. doi: 10.3877/cma.j.issn.1674-1358.2025.06.001

综述

基于色氨酸代谢的溃疡性结肠炎相关研究进展
朱鑫瑞, 牛敏, 杜艳()   
  1. 650032 昆明市,昆明医科大学第一附属医院医学检验科,云南省检验医学重点实验室,云南省医学检验临床医学研究中心
  • 收稿日期:2025-05-13 出版日期:2025-12-15
  • 通信作者: 杜艳
  • 基金资助:
    云南省科技厅昆医联合专项重点项目(202501AY070001-010); 云南省科技厅昆医联合专项面上项目(202501AY070001-065); 云南省/昆医大附一院重大科技专项(2023zdpy05)

Research progress on ulcerative colitis based on tryptophan metabolism

Xinrui Zhu, Min Niu, Yan Du()   

  1. Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming 650032, China
  • Received:2025-05-13 Published:2025-12-15
  • Corresponding author: Yan Du
引用本文:

朱鑫瑞, 牛敏, 杜艳. 基于色氨酸代谢的溃疡性结肠炎相关研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(06): 321-326.

Xinrui Zhu, Min Niu, Yan Du. Research progress on ulcerative colitis based on tryptophan metabolism[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2025, 19(06): 321-326.

溃疡性结肠炎(UC)是一种慢性炎症性肠道疾病,发病部位主要局限于结直肠的黏膜和黏膜下层,多表现为腹泻、黏液脓血便、腹痛,发作与缓解交替,其发病机制尚不明确,与环境、遗传、肠道微生物以及免疫等多种因素有关。色氨酸作为人体的必需氨基酸,其分解代谢主要通过犬尿氨酸、吲哚和5-羟色胺3条途径进行。色氨酸的多种代谢产物可调节肠道屏障功能、免疫应答、炎症反应以及肠道菌群等,进而影响UC疾病进程。探索色氨酸代谢紊乱与UC的相关性,有望开发UC新型辅助治疗方法。本文对色氨酸代谢的3条途径、色氨酸代谢紊乱与UC的病理机制、基于色氨酸代谢的UC治疗策略相关进展进行综述。

Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily localized to the mucosa and submucosa of the colorectal region. It is clinically characterized by diarrhea, bloody mucopurulent stools, abdominal pain, alternating periods of flare-ups and remission. Although its pathogenesis remains incompletely understood, it is associated with multiple factors including environment, genetics, gut microbiota and immunity. Tryptophan, an essential amino acid in humans, undergoes catabolism via three major pathways: the kynurenine, indole and 5-hydroxytryptamine pathways. Diverse tryptophan metabolites modulate intestinal barrier integrity, immune responses, inflammatory processes and microbial homeostasis, thereby influencing UC progression. Investigating the interplay between tryptophan metabolic disturbances and UC may facilitate the development of novel adjuvant therapeutic strategies. This article reviews the research progress on the three pathways of tryptophan metabolism, the pathological mechanisms linking tryptophan metabolism disorders to UC, and the UC treatment strategies targeting tryptophan metabolism.

表1 色氨酸代谢产物及其在UC中的生物学作用与机制
[1]
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet,2017,390(10114):2769-2778.
[2]
Kaplan GG. The global burden of IBD: from 2015 to 2025[J]. Nat Rev Gastroenterol Hepatol,2015,12(12):720-727.
[3]
Voelker R. What is ulcerative colitis?[J]. JAMA,2024,331(8):716.
[4]
Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis[J]. Lancet,2023,402(10401):571-584.
[5]
屈霄, 王靓, 陆萍, 等. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J/OL]. 中华消化病与影像杂志(电子版),2023,13(6):466-470.
[6]
郭伟仪, 林沛玲. 不同抗体型幽门螺杆菌感染与溃疡性结肠炎患者疾病活动及组织学评分的关系[J/CD]. 中华实验和临床感染病杂志(电子版),2024,18(4):237-244.
[7]
Rubin DT, Allegretti JR, Panés J, et al. Guselkumab in patients with moderately to severely active ulcerative colitis (QUASAR): phase 3 double-blind, randomised, placebo-controlled induction and maintenance studies[J]. Lancet,2025,405(10472):33-49.
[8]
Sun S, Hu F, Sang Y, et al. Dysregulated tryptophan metabolism contributes to metabolic syndrome in Chinese community-dwelling older adults[J]. BMC Endo Dis,2025,25(1):7.
[9]
Jenkins TA, Nguyen JC, Polglaze KE, et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis[J]. Nutrients,2016,8(1):56.
[10]
Badawy AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects[J]. Int J Tryptophan Res,2017,10:1178646917691938.
[11]
Deng Y, Zhou M, Wang J, et al. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain[J]. Gut Microbes,2021,13(1):1-16.
[12]
Xue C, Li G, Zheng Q, et al. Tryptophan metabolism in health and disease[J]. Cell Metab,2023,35(8):1304-1326.
[13]
Zinger A, Barcia C, Herrero MT, et al. The involvement of neuroinflammation and kynurenine pathway in Parkinson’s disease[J]. Parkinsons Dis,2011,2011:716859.
[14]
Sinclair LV, Neyens D, Ramsay G, et al. Single cell analysis of kynurenine and System L amino acid transport in T cells[J]. Nat Commun,2018,9(1):1981.
[15]
Baumgartner R, Berg M, Matic L, et al. Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans[J]. J Intern Med,2021,289(1):53-68.
[16]
Castellano-Gonzalez G, Jacobs KR, Don E, et al. Kynurenine 3-monooxygenase activity in human primary neurons and effect on cellular bioenergetics identifies new neurotoxic mechanisms[J]. Neurotox Res,2019,35(3):530-541.
[17]
Shajib MS, Chauhan U, Adeeb S, et al. Characterization of serotonin signaling components in patients with inflammatory bowel disease[J]. J Can Assoc Gastroenterol,2019,2(3):132-140.
[18]
Gershon MD. Review article: serotonin receptors and transporters--roles in normal and abnormal gastrointestinal motility[J]. Aliment Pharmacol Ther,2004,20(Suppl 7):3-14.
[19]
Hannon J, Hoyer D. Molecular biology of 5-HT receptors[J]. Behav Brain Res,2008,195(1):198-213.
[20]
Baricza E, Tamási V, Marton N, et al. The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells[J]. Cell Mol Life Sci,2016,73(1):95-117.
[21]
Lv WJ, Ma YM, Huang JY, et al. Polysaccharides derived from Shenling Baizhu San improve colitis via modulating tryptophan metabolism in mice[J]. Int J Biol Macromol,2022,222(Pt A):1127-1136.
[22]
Michaudel C, Danne C, Agus A, et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases[J]. Gut,2023,72(7):1296-1307.
[23]
Wang A, Guan C, Wang T, et al. Lactiplantibacillus plantarum-derived indole-3-lactic acid ameliorates intestinal barrier integrity through the AhR/Nrf2/NF-κB Axis[J]. J Agric Food Chem,2024,72(16):9236-9246.
[24]
Yu K, Li Q, Sun X, et al. Bacterial indole-3-lactic acid affects epithelium-macrophage crosstalk to regulate intestinal homeostasis[J]. Proc Natl Acad Sci USA,2023,120(45):e2309032120.
[25]
Qu X, Song Y, Li Q, et al. Indole-3-acetic acid ameliorates dextran sulfate sodium-induced colitis via the ERK signaling pathway[J]. Arch Pharm Res,2024,47(3):288-299.
[26]
Li M, Ding Y, Wei J, et al. Gut microbiota metabolite indole-3-acetic acid maintains intestinal epithelial homeostasis through mucin sulfation[J]. Gut Microbes,2024,16(1):2377576.
[27]
Yang W, Ren D, Shao H, et al. Theabrownin from Fu Brick Tea improves ulcerative colitis by shaping the gut microbiota and modulating the tryptophan metabolism[J]. J Agric Food Chem,2023,71(6):2898-2913.
[28]
Fu Y, Gao H, Hou X, et al. Pretreatment with IPA ameliorates colitis in mice: Colon transcriptome and fecal 16S amplicon profiling[J]. Front Immunol,2022,13:1014881.
[29]
Ma M, Wang Y, Fan S, et al. Urolithin A alleviates colitis in mice by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, and triggering AhR activation[J]. J Agric Food Chem,2023,71(20):7710-7722.
[30]
Liu M, Wang Y, Xiang H, et al. The tryptophan metabolite indole-3-carboxaldehyde alleviates mice with DSS-induced ulcerative colitis by balancing amino acid metabolism, inhibiting intestinal inflammation, and improving intestinal barrier function[J]. Molecules,2023,28(9):3704.
[31]
Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor[J]. Proc Natl Acad Sci USA,2020,117(32):19376-19387.
[32]
Dürk T, Panther E, Müller T, et al. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes[J]. Int Immunol,2005,17(5):599-606.
[33]
Maehara T, Matsumoto K, Horiguchi K, et al. Therapeutic action of 5-HT3 receptor antagonists targeting peritoneal macrophages in post-operative ileus[J]. Br J Pharmacol,2015,172(4):1136-1147.
[34]
Bhattarai Y, Jie S, Linden DR, et al. Bacterially derived tryptamine increases mucus release by activating a host receptor in a mouse model of inflammatory bowel disease[J]. iScience,2020,23(12):101798.
[35]
Metz R, Duhadaway JB, Kamasani U, et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2, 3-dioxygenase inhibitory compound D-1-methyl-tryptophan[J]. Cancer Res,2007,67(15):7082-7087.
[36]
Zhao LP, Wu J, Quan W, et al. DSS-induced colitis activates the kynurenine pathway in serum and brain by affecting IDO-1 and gut microbiota[J]. Front Immunol,2022,13:1089200.
[37]
Yu F, Du Y, Li C, et al. Association between metabolites in tryptophan-kynurenine pathway and inflammatory bowel disease: a two-sample Mendelian randomization[J]. Sci Rep,2024,14(1):201.
[38]
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase[J]. Immunity,2005,22(5):633-642.
[39]
Joisten N, Ruas JL, Braidy N, et al. The kynurenine pathway in chronic diseases: a compensatory mechanism or a driving force?[J]. Trends Mol Med,2021,27(10):946-954.
[40]
Wnorowski A, Wnorowska S, Kurzepa J, et al. Alterations in kynurenine and NAD(+) salvage pathways during the successful treatment of inflammatory bowel disease suggest HCAR3 and NNMT as potential drug targets[J]. Int J Mol Sci,2021,22(24):13497.
[41]
Shin JH, Lee YK, Shon WJ, et al. Gut microorganisms and their metabolites modulate the severity of acute colitis in a tryptophan metabolism-dependent manner[J]. Eur J Nutr,2020,59(8):3591-3601.
[42]
Shi Y, Luo S, Zhai J, et al. A novel causative role of imbalanced kynurenine pathway in ulcerative colitis: Upregulation of KMO and KYNU promotes intestinal inflammation[J]. Biochim Biophys Acta Mol Basis Dis,2024,1870(2):166929.
[43]
Tashita C, Hoshi M, Hirata A, et al. Kynurenine plays an immunosuppressive role in 2 4, 6-trinitrobenzene sulfate-induced colitis in mice[J]. World J Gastroenterol,2020,26(9):918-932.
[44]
Mar JS, Ota N, Pokorzynski ND, et al. IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans[J]. Microbiome,2023,11(1):47.
[45]
Wang G, Fan Y, Zhang G, et al. Microbiota-derived indoles alleviate intestinal inflammation and modulate microbiome by microbial cross-feeding[J]. Microbiome,2024,12(1):59.
[46]
Shen J, Yang L, You K, et al. Indole-3-acetic acid alters intestinal microbiota and alleviates ankylosing spondylitis in mice[J]. Front Immunol,2022,13:762580.
[47]
Zhang X, Shi L, Wang N, et al. Gut bacterial indole-3-acetic acid induced immune promotion mediates preventive effects of Fu Brick Tea polyphenols on experimental colitis[J]. J Agric Food Chem,2023,71(2):1201-1213.
[48]
Wang Y, Ji X, Zhao M, et al. Modulation of tryptophan metabolism via AHR-IL22 pathway mediates the alleviation of DSS-induced colitis by chitooligosaccharides with different degrees of polymerization[J]. Carbohydr Polym,2023,319:121180.
[49]
Ihekweazu FD, Engevik MA, Ruan W, et al. Bacteroides ovatus promotes IL-22 production and reduces trinitrobenzene sulfonic acid-driven colonic inflammation[J]. Am J Pathol,2021,191(4):704-719.
[50]
Suga N, Murakami A, Arimitsu H, et al. Luteolin suppresses 5-hydroxytryptamine elevation in stimulated RBL-2H3 cells and experimental colitis mice[J]. J Clin Biochem Nutr,2021,69(1):20-27.
[51]
Jørandli JW, Thorsvik S, Skovdahl HK, et al. The serotonin reuptake transporter is reduced in the epithelium of active Crohn’s disease and ulcerative colitis[J]. Am J Physiol Gastrointest Liver Physiol,2020,319(6):G761-G768.
[52]
Kwon YH, Wang H, Denou E, et al. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis[J]. Cell Mol Gastroenterol Hepatol,2019,7(4):709-728.
[53]
Mawe GM, Hurd M, Hennig GW, et al. Epithelial 5-HT(4) receptors as a target for treating constipation and intestinal inflammation[J]. Adv Exp Med Biol,2022,1383:329-334.
[54]
Motavallian A, Minaiyan M, Rabbani M, et al. Anti-inflammatory effects of alosetron mediated through 5-HT(3) receptors on experimental colitis[J]. Res Pharm Sci,2019,14(3):228-236.
[55]
Huang L, Zheng J, Sun G, et al. 5-Aminosalicylic acid ameliorates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota and bile acid metabolism[J]. Cell Mol Life Sci,2022,79(8):460.
[56]
Zhong G, Shi R, Chen Q, et al. Metabolomics reveals the potential metabolic mechanism of infliximab against DSS-induced acute and chronic ulcerative colitis[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(11):8815-8824.
[57]
Zhang Y, Han L, Dong J, et al. Shaoyao decoction improves damp-heat colitis by activating the AHR/IL-22/STAT3 pathway through tryptophan metabolism driven by gut microbiota[J]. J Ethnopharmacol,2024,326:117874.
[58]
Wan L, Qian C, Yang C, et al. Ginseng polysaccharides ameliorate ulcerative colitis via regulating gut microbiota and tryptophan metabolism[J]. Int J Biol Macromol,2024,265(Pt 2):130822.
[59]
Zou Y, Ding W, Wu Y, et al. Puerarin alleviates inflammation and pathological damage in colitis mice by regulating metabolism and gut microbiota[J]. Front Microbiol,2023,14:1279029.
[60]
Jing W, Dong S, Xu Y, et al. Gut microbiota-derived tryptophan metabolites regulated by Wuji Wan to attenuate colitis through AhR signaling activation[J]. Acta Pharm Sin B,2025,15(1):205-223.
[61]
Xu D, Wu Q, Liu W, et al. Therapeutic efficacy and underlying mechanisms of Gastrodia elata polysaccharides on dextran sulfate sodium-induced inflammatory bowel disease in mice: Modulation of the gut microbiota and improvement of metabolic disorders[J]. Int J Biol Macromol,2023,248:125919.
[1] 焦瑞, 徐刚, 练慧斌, 殷志敏, 韩辉, 周杰. 骨盆骨折大出血患者动脉栓塞术后臀肌及皮肤坏死治疗方法的探讨[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 7-11.
[2] 刘恒, 何亦龙, 袁蕊, 刘燕燕, 卢帅, 公茂琪, 查晔军, 蒋协远. 免疫与基质调节细胞治疗创伤性异位骨化的实验研究[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 47-53.
[3] 张翊乔, 李梦伊, 刘洋, 张鹏, 张忠涛. 我国腹腔镜减重代谢手术治疗现状与未来[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 1-4.
[4] 王伦, 周昕, 宁伟伟, 杨清旭, 胡旭, 何诣航, 谢铭. 我国腹腔镜减重代谢手术后营养不良及管理[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 9-11.
[5] 伍通美, 杨春燕. 胃癌异时性肝转移外科与转化治疗研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 78-82.
[6] 王龙, 张海翘, 黄勇, 李佳璇, 翟育豪, 尹杰, 张军. 胃韧带样纤维瘤两例报告并文献复习[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 96-98.
[7] 张翊乔, 李梦伊, 刘洋, 张忠涛. 单吻合口胃旁路术[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 12-12.
[8] 丁小博, 陈洁, 王艳波. 人工智能在泌尿系结石诊治中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 15-21.
[9] 刘辉, 谢周洲, 周晓琪, 张桂豪, 江惠明, 陈南辉. 靶向SOAT1对前列腺癌的作用和机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 95-101.
[10] 李建雄, 杨诚, 贺慷, 薛康颐, 郭文彬, 陈明坤, 刘存东. 精索静脉曲张伴血栓形成两例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 114-116.
[11] 许鹏, 邓一鸣, 张兴超, 莫益鑫, 郑炯文, 陈春晓, 郭凯, 徐啊白. 广东省医学会泌尿外科疑难病例多学科会诊(第24期)——膀胱憩室癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 117-122.
[12] 宋辉, 朱亮, 于茜. 胰腺癌肝转移临床特征及危险因素[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 73-78.
[13] 沈宏年, 陆含笑, 张硕, 姜东林, 向文, 项洁, 杨军. 非酒精性脂肪性肝病相关肝癌的临床诊治单中心分析[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 95-100.
[14] 耿钦, 李婧, 康强, 柯阳, 李越华. 肝右后叶包膜下脂肪瘤诊治并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 108-113.
[15] 李鹏, 张维桢, 武国帅, 马伊凡, 张灵强. 超声造影在胰腺疾病中的应用研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 119-123.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?