切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 360 -368. doi: 10.3877/cma.j.issn.1674-1358.2024.06.006

论著

重症肺炎患者肠道微生物群落的宏基因组学研究及其对抗菌药物疗效的预测价值
王利军1,(), 张红红1, 龙春欢1   
  1. 1.050000 石家庄市,石家庄市人民医院呼吸与危重症医学科
  • 收稿日期:2024-10-18 出版日期:2024-12-15
  • 通信作者: 王利军
  • 基金资助:
    石家庄市科学技术研究与发展计划项目(No.211460803)

Metagenomics study of intestinal microbial community in patients with severe pneumonia and its predictive value for antibiotic treatment

Lijun Wang1,(), Honghong Zhang1, Chunhuan Long1   

  1. 1.Department of Respiratory and Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang 050000, China
  • Received:2024-10-18 Published:2024-12-15
  • Corresponding author: Lijun Wang
引用本文:

王利军, 张红红, 龙春欢. 重症肺炎患者肠道微生物群落的宏基因组学研究及其对抗菌药物疗效的预测价值[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(06): 360-368.

Lijun Wang, Honghong Zhang, Chunhuan Long. Metagenomics study of intestinal microbial community in patients with severe pneumonia and its predictive value for antibiotic treatment[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2024, 18(06): 360-368.

目的

研究重症肺炎(SP)患者肠道微生物群落的宏基因组学及其对抗菌药物疗效的预测价值。

方法

回顾性选择2022年3月至2024年3月于石家庄市人民医院就诊的126例SP患者为研究对象,根据其使用抗菌药物后的疗效分为有效组(84例)和无效组(42例)。收集两组患者的粪便样本并进行DNA提取,随后进行16S rRNA基因V4区域的测序分析,将测序分析结果纳入宏基因组学研究。采用独立样本t检验、主坐标分析(PCoA)、非参数协方差分析(PERMANOVA)和相似性分析(ANOSIM)分析两组患者肠道菌群丰度、微生物网络和基因功能等差异。

结果

两组患者年龄、性别、BMI、饮酒史、吸烟史、并发症、是否合并基础疾病和基础疾病用药差异均无统计学意义(P均>0.05)。稀释性曲线和物种累积曲线显示,该体系测序数量充足,测序深度合理。α多样性分析结果显示,两组间Shannon指数和Simpson指数差异均有统计学意义(t = 3.958、P = 0.025,t = 6.583、P <0.001);β多样性分析结果显示两组样本菌群显著分离(F = 6.665、P < 0.001)。两组样本在门层级水平上共检测出18个菌门,主要为厚壁菌门、变形菌门、拟杆菌门、放线菌门和软壁菌门等;在属层级水平上,共检测出952个菌属,其中有8个菌属的相对丰度在3%以上,两组患者的优势菌种不一致。丰度比较结果显示:在门水平上,有效组厚壁菌门和变形菌门相对丰度低于无效组(t = 14.889、P < 0.001,t = 2.508、P = 0.013),有效组拟杆菌门、放线菌门和软壁菌门相对丰度高于无效组(t =17.776、P < 0.001,t = 16.802、P < 0.001,t = 1.997,P = 0.048);在属水平上,有效组肠球菌属、链球菌属、克雷伯菌属和瘤胃球菌属相对丰度高于无效组(t = 16.663、P < 0.001;t = 6.313、P <0.001;t = 9.826、P < 0.001;t = 13.158、P < 0.001),有效组双歧杆菌属、大肠埃希菌属和梭菌属相对丰度低于无效组(t = 16.642、P < 0.001,t = 18.814、P < 0.001,t = 12.762,P < 0.001)。网络分析显示,有效组微生物网络节点和边的数量显著高于无效组,微生物网络结构比无效组更加复杂。基因功能富集分析显示,有效组相对丰度较高的基因功能是ATP结合、IMP生物合成过程和氯酸盐生物合成过程;无效组相对丰度较高的基因功能是胞质、核糖体的结构成分等。通路富集分析显示,有效组相对丰度较高的信号通路为淀粉降解、蔗糖降解和异亮氨酸生物合成;无效组相对丰度较高的信号通路为异戊二烯生物合成和甲基赤四醇磷酸途径。

结论

抗菌药物治疗有效的SP患者样本丰度较高的菌群为肠球菌属、链球菌属和克雷伯菌属等;抗菌药物治疗无效的SP患者样本丰度较高的菌群为肠球菌属、大肠埃希菌属和双歧杆菌属等,肠道微生物群落的宏基因组学对抗菌药物的疗效具有一定预测价值。

Objective

To investigate the metagenomics of gut microbiota in patients with severe pneumonia (SP) and the predictive value for the efficacy of antimicrobial agents.

Methods

Total of 126 patients with SP treated in Shijiazhuang People's Hospital from March 2022 to March 2024 were selected as the research objects, retrospectively.According to the efficacy of antibiotics, 126 cases were divided into effective group (84 cases) and ineffective group (42 cases).Stool samples were collected from both groups for DNA extraction, followed by sequencing analysis of the V4 region of the 16S rRNA gene.The results of sequencing analysis were included in the metagenomics study.The abundance, microbial network and gene function of the patients were analyzed by independent sample t test, principal coordinate analysis(PCoA), non-parametric analysis of covariance (PERMANOVA) and analysis of similarity (ANOSIM).

Results

There were no significant differences in age, gender, BMI, drinking history, smoking history,complications, comorbidities and medication for underlying diseases between the two groups (all P > 0.05).The dilution curve and species accumulation curve showed that the sequencing amount of this system was sufficient and the sequencing depth was reasonable.The results of α diversity analysis showed that there were significant differences in Shannon index and Simpson index between the two groups (t = 3.958, P = 0.025;t = 6.583, P < 0.001).β diversity analysis showed that the two groups of samples were significantly separated(F = 6.665, P < 0.001).Total of 18 phyla were detected in the two groups of samples, mainly including FirmicutesProteobacteriaBacteroidetesActinobacteria and Tenericutes.At the genus level, a total of 952 bacterial genera were detected, of which 8 genera had a relative abundance above 3%.The dominant species of the two groups were not consistent.The abundance comparison showed that: at the phylum level,the relative abundance of Firmicutes and Proteobacteria in the effective group was lower than that of the ineffective group (t = 14.889, P < 0.001; t = 2.508, P = 0.013), and the relative abundance of Bacteroidetes,Actinobacteria and Tenericutes in the effective group was higher than that in the ineffective group (t =17.776, P < 0.001; t = 16.802, P < 0.001; t = 1.997, P = 0.048).At the genus level, the relative abundance of EnterococcusStreptococcusKlebsiella and Ruminococcus in the effective group was higher than that of the ineffective group (t = 16.663, P < 0.001; t = 6.313, P < 0.001; t = 9.826, P < 0.001; t = 13.158, P < 0.001).The relative abundance of BifidobacteriumEscherichia coli and Clostridium in effective group was lower than that of the ineffective group (t = 16.642, P < 0.001; t = 18.814, P < 0.001; t = 12.762, P < 0.001).Network analysis showed that the number of nodes and edges of the effective group was significantly higher than that of the ineffective group, and the structure of the microbial network was more complex than that of the ineffective group.Gene function enrichment analysis showed that the gene functions with higher relative abundance in the effective group were ATP binding, IMP biosynthesis process and chlorate biosynthesis process.The functions of genes with higher relative abundance in the ineffective group were cytoplasm and structural components of ribosomes.Pathway enrichment analysis showed that the signaling pathways with high relative abundance in the effective group were starch degradation, sucrose degradation and isoleucine biosynthesis.The signaling pathways with high relative abundance in the ineffective group were isoprene biosynthesis and methylerythritol phosphate pathway.

Conclusions

EnterococcusStreptococcus and Klebsiella were the most abundant bacteria in samples of patients with SP effectively treated with antibiotics.EnterococcusEscherichia coli and Bifidobacterium were the most abundant bacteria in samples of patients with SP ineffectively treated with antibiotics, and the metagenomics of intestinal microbial community has a certain predictive value for the efficacy of antibiotics.

表1 有效组和无效组患者临床基线资料
图1 粪便样本多样性分析 注:A:稀释性曲线,B:物种累积曲线
图2 两组粪便微生物菌群α多样性分析箱式图 注:A:Shannon指数;B:Simpson指数
图3 两组粪便微生物菌群β多样性分析 注:A:Bray-Curtis矩阵分析;B:PCoA分析
图4 两组样品门层级水平主要物种的分布
图5 两组样品属层级水平主要物种的分布
表2 两组样本肠道微生物菌群丰度(±s,%)
图6 菌群微生物网络 注:A为有效组,B为无效组
图7 有效组和无效组基因功能差异 注:GO:基因本体(gene ontology),MF:分子功能 (molecular function),BP:生物过程 (biological process),CC:细胞组分(cellular component),LDA:线性判别分析(linear discriminant analysis)
图8 有效组和无效组信号通路 注:PWY:通路(pathway),TCA:三羧酸(tricarboxylic acid),LDA:线性判别分析(linear discriminant analysis)
[1]
沈杨, 余海波, 曾强英.外周血可溶性Fas蛋白及其配体, 髓过氧化物酶水平对重症肺炎患儿预后不良的预测价值[J/CD].中华实验和临床感染病杂志(电子版),2022,16(4):268-274.
[2]
李泽暄, 陈新光, 汤子鸣, 等.急诊重症肺炎并发感染性休克的临床特点及相关影响因素分析[J].中国病原生物学杂志,2024,19(6):720-723, 728.
[3]
Lee WC, Chang CC, Ho MC, et al.Associations between severe influenza-complicated thromboembolism events, intensive care unit stays and mortality, and associated risk factors: A retrospective cohort study[J].Influenza Other Respir Viruses,2024,18(9):e13354.
[4]
Qian Y, Sorgen AA, Steffen KJ, et al.Intestinal energy harvest mediates gut microbiota-associated weight loss following bariatric surgery[J].Obes Surg,2024,34(10):3771-3780.
[5]
Chen X, Chen Y, Zhang Y, et al.ZG16 impacts gut microbiotaassociated intestinal inflammation and pulmonary mucosal function through bacterial metabolites[J].Int Immunopharmacol,2024,141:112995.
[6]
Wen L, Shi L, Kong XL, et al.Gut microbiota protected against Pseudomonas aeruginosa pneumonia via restoring Treg/Th17 balance and metabolism[J].Front Cell Infect Microbiol,2022,12:856633.
[7]
Metcalfe-Roach A, Cirstea MS, Yu AC, et al.Metagenomic analysis reveals large-scale disruptions of the gut microbiome in parkinson's disease[J].Mov Disord,2024,39(10):1740-1751.
[8]
Zeng G, Zeng L, Wang Y, et al.Correlation between gut microbiota characteristics and non-small cell lung cancer based on macrogenomics sequencing[J].Hereditas,2024,161(1):26.
[9]
李文慧.关于“中国成人社区获得性肺炎诊断和治疗指南(2016年版)”中重症肺炎诊断标准的商榷[J].中华结核和呼吸杂志,2017,40(8):639.
[10]
凌洁, 陈娟红, 张帅.莫西沙星联合比阿培南治疗老年重症肺炎患者疗效及对炎性因子肿瘤坏死因子相关激活蛋白和血管细胞黏附分子-1的影响[J].中国药物与临床,2024,24(16):1058-1062.
[11]
贺雨, 王玉娟, 高蓉, 等.新型生物标志物可溶性髓样细胞触发受体-1在重症肺炎早期诊断中的应用价值[J/CD].中华实验和临床感染病杂志(电子版),2022,16(5):307-312.
[12]
Guo J, Chen J, Sun X.Bacillus megaterium infection presenting as pulmonary alveolar proteinosis, a case report[J].BMC Infect Dis,2024,24(1):868.
[13]
Qiu J, Ma J, Dong Z, et al.Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution[J].Nat Commun,2024,15(1):7396.
[14]
Dai X, Xu R, Li N.The interplay between airway cilia and coronavirus infection, implications for prevention and control of airway viral infections[J].Cells,2024,13(16):1353.
[15]
Chen S, Zhang Z, Liu S, et al.Consistent signatures in the human gut microbiome of longevous populations[J].Gut Microbes,2024,16(1):2393756.
[16]
高世勇, 魏新瑞, 唐博琪, 等.基于宏基因组学的肠道微生物研究进展[J].中药药理与临床,2024,40(3):115-119.
[17]
Luo Y, Peng S, Cheng J, et al.Chitosan-stabilized selenium nanoparticles alleviate high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) by modulating the gut barrier function and microbiota[J].J Funct Biomater,2024,15(8):236.
[18]
Kearns RP, Dooley JSG, Matthews M, et al.Do probiotics mitigate GI-induced inflammation and perceived fatigue in athletes? A systematic review[J].J Int Soc Sports Nutr,2024,21(1):2388085.
[19]
Sey EA, Warris A.The gut-lung axis: the impact of the gut mycobiome on pulmonary diseases and infections[J].Oxf Open Immunol,2024,5(1):iqae008.
[20]
Cakir M, Grossman A.The molecular pathogenesis and management of bronchial carcinoids[J].Expert Opin Ther Targets,2011,15(4):457-491.
[21]
Samak ME, Solyman SM, Hanora A, et al.Metagenomic mining of two Egyptian Red Sea sponges associated microbial community[J].BMC Microbiol,2024,24(1):315.
[22]
Hartikainen AK, Jalanka J, Lahtinen P, et al.Fecal microbiota transplantation influences microbiota without connection to symptom relief in irritable bowel syndrome patients[J].NPJ Biofilms Microbiomes,2024,10(1):73.
[23]
张明霞, 张强, 李文斌, 等.高原缺氧对血脑屏障中ATP-结合盒转运蛋白表达的影响[J].中国临床药理学杂志,2024,40(10):1488-1491.
[24]
Munroe JA, Doe CQ.Imp is expressed in INPs and newborn neurons where it regulates neuropil targeting in the central complex[J].Neural Dev,2023,18(1):9.
[25]
Petibon C, Malik Ghulam M, Catala M, et al.Regulation of ribosomal protein genes: An ordered anarchy[J].Wiley Interdiscip Rev RNA,2021,12(3):e1632.
[26]
Schmidt C, Wehsling M, Le Mignon M, et al.Lactoyl leucine and isoleucine are bioavailable alternatives for canonical amino acids in cell culture media[J].Biotechnol Bioeng,2021,118(9):3395-3408.
[1] 张烈, 严一核, 杜洁瑜. 分泌型白细胞蛋白酶抑制因子对无创呼吸机治疗重症肺炎患者的预测效能[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 301-306.
[2] 高娟, 郑枫, 张晴, 朱琳娜, 王娴. 三种常用临床指标在重症肺炎患者液体管理监测中的比较研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 204-210.
[3] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[4] 王浩元, 王舒, 王娟, 杨建军. 基于类器官模型探索肠道与肠道菌群间相互关系的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 220-224.
[5] 王刚, 李涛, 刘玉芳. 胃癌根治手术后行抗菌药物治疗对患者肠道细菌移位及肠黏膜屏障功能的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 141-145.
[6] 刘雯, 赵明栋, 夏伟, 潘以雄. 不同剂量比阿培南治疗重症肺炎的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 789-792.
[7] 于燕兴, 梅喜庆, 刘凤娟, 于梓薇, 许亚慧, 徐飞. 高通量测序重症肺炎肺泡灌洗液病原体的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 785-788.
[8] 吴洁柔, 王琴, 张静, 周耿标, 赖芳, 韩云. 体质量指数、血清白蛋白联合mNUTRIC评分对重症肺炎预后的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 392-396.
[9] 李芝朋, 周明虎, 董大红, 许正峰. 早期血小板动态分析对重症肺炎预后的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 475-477.
[10] 徐双喜, 杨玉坤, 姜海波. 重症肺炎HE4表达水平及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 300-302.
[11] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[12] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[13] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[14] 李秀玲, 连少锋, 荣刘涛, 李登峰, 饶蕴玉. 利巴韦林联合复方嗜酸乳杆菌治疗轮状病毒肠炎患儿的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 369-372.
[15] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
阅读次数
全文


摘要