切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 73 -78. doi: 10.3877/cma.j.issn.1674-1358.2023.02.001

综述

巨细胞病毒免疫逃逸机制研究进展
陈艳, 侍效春(), 刘晓清   
  1. 100730 北京,中国医学科学院北京协和医学院,北京协和医院,疑难重症及罕见病国家重点实验室,感染内科
    100730 北京,中国医学科学院北京协和医学院,北京协和医院,疑难重症及罕见病国家重点实验室,感染内科;100730 北京,中国医学科学院北京协和医学院,国际临床流行病学网,临床流行病学教研室
  • 收稿日期:2022-12-27 出版日期:2023-04-15
  • 通信作者: 侍效春
  • 基金资助:
    中央高水平医院临床科研专项(No. 2022-PUMCH-A-043)

Research progress on the mechanism of cytomegalovirus immuneevasion

Yan Chen, Xiaochun Shi(), Xiaoqing Liu   

  1. Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Unison Medical College, Beijing 100730, China
    Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Unison Medical College, Beijing 100730, China; Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing 100730, China
  • Received:2022-12-27 Published:2023-04-15
  • Corresponding author: Xiaochun Shi
引用本文:

陈艳, 侍效春, 刘晓清. 巨细胞病毒免疫逃逸机制研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 73-78.

Yan Chen, Xiaochun Shi, Xiaoqing Liu. Research progress on the mechanism of cytomegalovirus immuneevasion[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(02): 73-78.

巨细胞病毒(CMV)是一种广泛传播的病原体,感染人体后长期潜伏。在特定条件下,特别是在免疫功能低下的人群中,易发生潜伏性CMV感染再激活,引起严重的并发症乃至死亡。CMV在与宿主长期共存中形成了复杂的抗免疫应答机制,不仅可利用其庞大的基因组诱导合成多种组分参与抵抗宿主的抗感染应答,且能够通过调控宿主细胞以实现免疫逃逸。主要机制包括:干扰主要组织相容性复合体、T细胞耗竭,逃避干扰素信号,干扰自然杀伤细胞、树突状细胞和干扰体液免疫等。研究CMV免疫逃逸机制对CMV感染防治意义重大,本文就CMV免疫逃逸机制研究进展作一综述,探讨病毒与宿主相互作用的发生、发展与结局。

Cytomegalovirus (CMV) is a widespread pathogen that persists as a lifelong latent infection. In immunocompromised individuals, CMV can reactivate and cause substantial immunological changes in the host, resulting in serious clinical complications and death. During the long evolution process of the virus and the host, the virus has developed complex mechanisms to evade the host immune system. Owing to the huge genome, CMV expresses various components that resist the host immuneresponse effectively. Morever, CMV also exploits host cells to resist the immmune response. The main mechanisms include: down-regulating the expressions of major histocompatibility complex, T cell exhaustion, escaping from the host interferon response, inhibiting the functions of natural killer cells and dendritic cells, impairing humoral immunity, etc. Studying on the mechanism of CMV immune evasion is of great significance to the prevention and treatment of CMV infection. This article reviews research progress on the mechanism of CMV immune evasion, and probes into the occurrence, development and outcomes of the interaction between the virus and the host.

[1]
Sinzger C, Digel M, Jahn G. Cytomegalovirus cell tropism[J]. Curr Top Microbiol Immunol,2008,325:63-83.
[2]
Stern L, Withers B, Avdic S, et al. Human cytomegalovirus latency and reactivation in allogeneic hematopoietic stem cell transplant recipients[J]. Front Microbiol,2019,10:1186.
[3]
Fang FQ, Fan QS, Yang ZJ, et al. Incidence of cytomegalovirus infection in Shanghai, China[J]. Clin Vaccine Immunol,2009,16(11):1700-1703.
[4]
Han SH, Yoo SG, Do Han K, et al. The incidence and effect of cytomegalovirus disease on mortality in transplant recipients and general population: real-world nationwide cohort data[J]. Int J Med Sci,2021,18(14):3333-3341.
[5]
Da Cunha T, Wu GY. Cytomegalovirus hepatitis in immunocompetent and immunocompromised hosts[J]. J Clin Transl Hepatol,2021,9(1):106-115.
[6]
谭雨亭, 侍效春, 刘晓清, 等. 系统性红斑狼疮合并巨细胞病毒感染的临床特征及危险因素[J]. 中国医学科学院学报,2020,42(6):749-754.
[7]
Gabor F, Jahn G, Sedmak DD, et al. In vivo downregulation of MHC class Ⅰmolecules by HCMV occurs during all phases of viral replication but is not always complete[J]. Front Cell Infect Microbiol,2020,10:283.
[8]
Ameres S, Besold K, Plachter B, et al. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity[J]. J Immunol,2014,192(12):5894-5905.
[9]
Hsu JL, Van Den Boomen DJ, Tomasec P, et al. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141[J]. PLoS Pathog,2015,11(4):e1004811.
[10]
Kalejta RF, Albright ER. Expanding the known functional repertoire of the human cytomegalovirus pp71 protein[J]. Front Cell Infect Microbiol,2020,10:95.
[11]
Melaiu O, D'Amico S, Tempora P, et al. Impact of natural occurring ERAP1 single nucleotide polymorphisms within miRNA-binding sites on HCMV infection[J]. Int J Mol Sci,2020,21(16):5861.
[12]
Poole E, Neves TC, Oliveira MT, et al. Human cytomegalovirus interleukin 10 homologs: facing the immune system[J]. Front Cell Infect Microbiol,2020,10:245.
[13]
Yunis J, Farrell HE, Bruce K, et al. Murine cytomegalovirus degrades MHC class Ⅱ to colonize the salivary glands[J]. PLoS Pathog,2018,14(2):e1006905.
[14]
Lim EY, Jackson SE, Wills MR. The CD4+ T cell response to human cytomegalovirus in healthy and immunocompromised people[J]. Front Cell Infect Microbiol,2020,10:202.
[15]
Sandhu PK, Buchkovich NJ. Human cytomegalovirus decreases major histocompatibility complex class Ⅱ by regulating class Ⅱ transactivator transcript levels in a myeloid cell line[J]. J Virol,2020,94(7):e01901-19.
[16]
Sarango G, Richetta C, Pereira M, et al. The autophagy receptor TAX1BP1 (T6BP) improves antigen presentation by MHC-Ⅱ molecules[J]. EMBO Rep,2022,23(12):e55470.
[17]
洪淑君, 陈名武. IL-10在巨细胞病毒感染中的免疫机制研究进展[J]. 国际儿科学杂志,2016,43(6):434-436.
[18]
Wehrens EJ, Wong KA, Gupta A, et al. IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence[J]. PLoS One,2018,13(7):e0201249.
[19]
Rollings CM, Sinclair LV, Brady HJM, et al. Interleukin-2 shapes the cytotoxic T cell proteome and immune environment-sensing programs[J]. Sci Signal,2018,11(526):eaap8112.
[20]
Kalia V, Sarkar S. Regulation of effector and memory CD8 T cell differentiation by IL-2-A balancing act[J]. Front Immunol,2018,9:2987.
[21]
Hashimoto M, Araki K, Cardenas MA, et al. PD-1 combination therapy with IL-2 modifies CD8(+) T cell exhaustion program[J]. Nature,2022,610(7930):173-181.
[22]
West EE, Jin HT, Rasheed AU, et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells[J]. J Clin Invest,2013,123(6):2604-2615.
[23]
Hernandez R, Põder J, Laporte KM, et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer[J]. Nat Rev Immunol,2022,22(10):614-628.
[24]
Choi YJ, Kim SB, Kim JH, et al. Impaired polyfunctionality of CD8(+) T cells in severe sepsis patients with human cytomegalovirus reactivation[J]. Exp Mol Med,2017,49(9):e382.
[25]
Murata T. Human herpesvirus and the immune checkpoint PD-1/PD-L1 pathway: disorders and strategies for survival[J]. Microorganisms,2021,9(4):778.
[26]
Jin HT, Anderson AC, Tan WG, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection[J]. Proc Natl Acad Sci USA,2010,107(33):14733-14738.
[27]
Avery L, Filderman J, Szymczak Workman AL, et al. Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion[J]. Proc Natl Acad Sci USA,2018,115(10):2455-2460.
[28]
Kataoka S, Manandhar P, Lee J, et al. The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse[J]. Sci Signal,2021,14(687):eaba0717.
[29]
Lerner AH, Farmakiotis D. CMV cell-mediated immunity assays: Focus on CD4(+) cells[J]. Am J Transplant,2020,20(8):2285-2286.
[30]
王凛介, 朱科达, 刘风云, 等. 系统性红斑狼疮患者不同巨细胞病毒感染状态淋巴细胞亚群分析[J/CD]. 中华实验和临床感染病杂志(电子版),2020,14(6):501-506.
[31]
Tovar Salazar A, Weinberg A. Understanding the mechanism of action of cytomegalovirus-induced regulatory T cells[J]. Virology,2020,547:1-6.
[32]
朱莉莉, 徐玲, 王军. HCMV感染患儿HLA-DR,CD4+CD25+调节性T细胞及IL-17, IL-27表达水平与肝损害的相关性研究[J]. 中国当代儿科杂志,2018,20(7):554-558.
[33]
于仲勋, 宋红梅. 认识Ⅰ型干扰素病[J]. 中华实用儿科临床杂志,2022,37(1):2-5.
[34]
Jiang G, Gong M, Song H, et al. Tob2 inhibits TLR-induced inflammatory responses by association with TRAF6 and MyD88[J]. J Immunol,2020,205(4):981-986.
[35]
Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway[J]. Immunity,2020,53(1):43-53.
[36]
Gao D, Ciancanelli MJ, Zhang P, et al. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons[J]. J Clin Invest,2021,131(1):e134529.
[37]
Castón JJ, Cantisán S, González-gasca F, et al. Interferon-γ production by CMV-specific CD8+ T lymphocytes provides protection against cytomegalovirus reactivation in critically ill patients[J]. Intensive Care Med,2016,42(1):46-53.
[38]
Chemaly RF, El Haddad L, Winston DJ, et al. Cytomegalovirus (CMV) cell-mediated immunity and CMV infection after allogeneic hematopoietic cell transplantation: the REACT study[J]. Clin Infect Dis,2020,71(9):2365-2374.
[39]
Liu Y, Ye S, Zhou B, et al. The establishment of CMV antigen-specific enzyme-linked immunospot assay among Chinese: A pilot study[J]. Clin Chim Acta,2020,500:143-148.
[40]
卢元元, 舒赛男. 人巨细胞病毒在逃避宿主干扰素信号方面的研究进展[J]. 中华实用儿科临床杂志,2022,37(11):878-880.
[41]
Zou HM, Huang ZF, Yang Y, et al. Human cytomegalovirus protein UL94 targets MITA to evade the antiviral immune response[J]. J Virol,2020,94(12):e00022-20.
[42]
Ren Y, Wang A, Wu D, et al. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication[J]. Nat Microbiol,2022,7(7):1041-1053.
[43]
Patel M, Vlahava VM, Forbes SK, et al. HCMV-encoded NK modulators: lessons from in vitro and in vivo genetic variation[J]. Front Immunol,2018,9:2214.
[44]
Umashankar M, Rak M, Bughio F, et al. Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection[J]. J Virol,2014,88(11):5987-6002.
[45]
Dassa L, Seidel E, Oiknine Djian E, et al. The human cytomegalovirus protein UL148A downregulates the NK cell-activating ligand MICA to avoid NK cell attack[J]. J Virol,2018,92(17):e00162-18.
[46]
Wang ECY, Pjechova M, Nightingale K, et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses[J]. Proc Natl Acad Sci USA,2018,115(19): 4998-5003.
[47]
Becker S, Fink A, Podlech J, et al. Host-adapted gene families involved in murine cytomegalovirus immune evasion[J]. Viruses, 2022,14(1):128.
[48]
Berry R, Vivian JP, Deuss FA, et al. The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins[J]. J Biol Chem,2014, 289(34):23753-23763.
[49]
Hammer Q, Rückert T, Borst EM, et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells[J]. Nat Immunol,2018,19(5):453-463.
[50]
Andrews DM, Andoniou CE, Granucci F, et al. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis[J]. Nat Immunol,2001,2(11):1077-1084.
[51]
Mathys S, Schroeder T, Ellwart J, et al. Dendritic cells under influence of mouse cytomegalovirus have a physiologic dual role: to initiate and to restrict T cell activation[J]. J Infect Dis,2003,187(6):988-999.
[52]
Avdic S, Mcsharry BP, Slobedman B. Modulation of dendritic cell functions by viral IL-10 encoded by human cytomegalovirus[J]. Front Microbiol,2014,5:337.
[53]
Vajger U, Roman PJ. Recent discoveries in dendritic cell tolerance-inducing pharmacological molecules[J]. Int Immunopharmacol, 2020,81:106275.
[54]
Corrales Aguilar E, Trilling M, Hunold K, et al. Human cytomegalovirus Fcγ binding proteins gp34 and gp68 antagonize Fcγ receptors Ⅰ, Ⅱ and Ⅲ[J]. PLoS Pathog,2014,10(5):e1004131.
[55]
Liu X, Palaniyandi S, Zhu I, et al. Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor[J]. Nat Commun,2019,10(1):3020.
[56]
Raanani P, Gafter-Gvili A, Paul M, et al. Immunoglobulin prophylaxis in hematopoietic stem cell transplantation: systematic review and meta-analysis[J]. J Clin Oncol,2009,27(5):770-781.
[1] 李东明, 何升. 先天性巨细胞病毒感染早期筛查研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 627-633.
[2] 林瀚妮, 李管明, 张霭润, 李宁宁, 房晓祎. ABCB4基因突变合并巨细胞病毒感染致婴儿胆汁淤积症的诊治分析并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(01): 46-53.
[3] 周莹莹, 邓莉平, 鲁植艳, 苏志颖, 熊勇. 获得性免疫缺陷综合征合并神经梅毒及巨细胞病毒脑炎一例并相关文献分析[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(05): 350-355.
[4] 李丹, 孙挥宇, 毛菲菲, 王胜男, 鲁丹, 刘夕瑶, 柳月红, 许雪静, 刘彬彬, 董愉. 获得性免疫缺陷综合征合并巨细胞病毒视网膜炎患者发生免疫恢复性葡萄膜炎的临床研究[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(03): 202-208.
[5] 王凛介, 朱科达, 刘风云, 马佳星, 陶丽红, 张辰伟. 系统性红斑狼疮患者不同巨细胞病毒感染状态淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(06): 501-506.
[6] 刘玄勇, 郭智, 蒋丽琼, 陈丽萍, 陈丽娜. 伯基特淋巴瘤化疗后合并巨细胞病毒视网膜炎一例[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(06): 515-518.
[7] 尚文雯, 赵鸿, 戎国栋, 吴蕾, 黄珮珺, 王芳, 徐婷. 肺炎伴巨细胞病毒感染患儿外周血免疫功能分析[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(02): 105-109.
[8] 田敏, 王博, 刘学民, 张晓刚, 郭坤, 李宇, 胡良硕, 霍锦霞, 吕毅. 他克莫司个体内高变异度与肝移植术后免疫介导移植物损伤的临床研究[J]. 中华移植杂志(电子版), 2022, 16(02): 65-71.
[9] 巨春蓉, 练巧燕, 蔡宇航, 陈奥, 徐鑫, 韦兵, 黄丹霞, 陈荣昌, 何建行. 胸腔脏器移植受者巨细胞病毒感染情况及预后分析[J]. 中华移植杂志(电子版), 2021, 15(04): 193-198.
[10] 陈忠宝. 器官移植术后CMV诊断新进展[J]. 中华移植杂志(电子版), 2020, 14(03): 0-0.
[11] 孔文君, 陶勇, 陈超, 谢连永, 杜葵芳. 两种不同诱因所致巨细胞病毒视网膜炎预后的临床观察[J]. 中华眼科医学杂志(电子版), 2020, 10(01): 13-19.
[12] 张志辉, 刘晓青. 重症患者巨细胞病毒活动性感染与Th1/Th2型细胞因子的研究进展[J]. 中华重症医学电子杂志, 2020, 06(01): 109-112.
[13] 龚畅, 林群, 宋尔卫. 肿瘤免疫治疗机制及乳腺癌免疫治疗进展[J]. 中华临床医师杂志(电子版), 2020, 14(11): 857-861.
[14] 冯静, 周乙华. 妊娠期巨细胞病毒感染的诊断、处理和咨询策略[J]. 中华产科急救电子杂志, 2020, 09(04): 199-203.
[15] 江龙凤, 金艳, 柳燕. 人巨细胞病毒IE抗原快速免疫荧光检测法在先天性人巨细胞病毒感染筛查中的应用[J]. 中华诊断学电子杂志, 2019, 07(04): 259-264.
阅读次数
全文


摘要