切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 12 -15. doi: 10.3877/cma.j.issn.1674-1358.2023.01.003

综述

出血热病毒感染呼吸道研究进展
张凯玄1, 梁燕2, 石红妍3, 郑煦暘4, 连建奇4, 张欠欠1,()   
  1. 1. 716000 延安市,延安大学医学院病原生物学教研室
    2. 710038 西安市,空军军医大学第二附属医院传染科;710038 西安市,西北大学生命科学学院微生物学教研室
    3. 716000 延安市,延安大学医学院病原生物学教研室;710038 西安市,空军军医大学第二附属医院传染科
    4. 710038 西安市,空军军医大学第二附属医院传染科
  • 收稿日期:2022-12-27 出版日期:2023-02-15
  • 通信作者: 张欠欠
  • 基金资助:
    陕西省重点研发计划项目(No. 2021SF-230); 榆林市科技项目(No. CXY-2020-064); 校产学研项目(No. CXY202121)

Research progress on the infection of hemorrhagic fever viruses to respiratory tract

Kaixuan Zhang1, Yan Liang2, Hongyan Shi3, Xuyang Zheng4, Jianqi Lian4, Qianqian Zhang1,()   

  1. 1. Department of Pathogenic Biology, Medicine of Yan’an University School, Yan’an 716000, China
    2. Department of Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi’an 710038, China; Department of Microbiology, Life Sciences of Northwest University, Xi’an 710038, China
    3. Department of Pathogenic Biology, Medicine of Yan’an University School, Yan’an 716000, China; Department of Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi’an 710038, China
    4. Department of Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi’an 710038, China
  • Received:2022-12-27 Published:2023-02-15
  • Corresponding author: Qianqian Zhang
引用本文:

张凯玄, 梁燕, 石红妍, 郑煦暘, 连建奇, 张欠欠. 出血热病毒感染呼吸道研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 12-15.

Kaixuan Zhang, Yan Liang, Hongyan Shi, Xuyang Zheng, Jianqi Lian, Qianqian Zhang. Research progress on the infection of hemorrhagic fever viruses to respiratory tract[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(01): 12-15.

病毒性出血热(VHFs)是一类由多种病毒感染引起的以发热、休克和出血等为主要临床表现的急性传染病。VHFs在全球广泛分布,部分病死率较高,严重危害人类健康。近年来,登革热、肾综合征出血热、埃博拉病毒病等VHFs仍持续流行或出现局部暴发,成为全球严重的公共卫生威胁。目前有关VHFs感染发病机制的研究仍不尽完善,且多数此类疾病尚无特异性治疗手段。呼吸道既是人体暴露于出血热病毒的重要途径,也是机体对其产生免疫反应的重要,还是多种VHFs出现损伤的重要器官;研究出血热病毒对呼吸道的感染,揭示出血热病毒引起呼吸道病变的机制,对研究VHFs感染发病及其重症化过程、研究防治措施具有重要意义。本文对登革病毒、汉坦病毒和埃博拉病毒等常见出血热病毒对呼吸道的感染及其生物学研究现状进行综述。

Viral hemorrhagic fevers (VHFs) is a group of acute infectious diseases caused by a variety of viruses with fever, shock and hemorrhage as the main clinical symptoms. VHFs are globally spreaded and with a high mortality, posing a serious risk to human health. In recent years, VHFs such as dengue fever, hemorrhagic fever with renal syndrome and Ebola virus disease had continued to be prevalent, posing a serious challenge to global public health security. The pathogenesis of VHFs are still not well studied and there is no specific treatment for most of these diseases. The respiratory tract is not only an important way for the human body to be exposed to hemorrhagic fever virus, but also an important site for the body to produce immune response, and an important organ for damage in various VHFs. It is of great significance to study the infection of respiratory tract and reveal the mechanism of respiratory tract lesions caused by hemorrhagic fever virus, which is of great significance to investigate the pathogenesis of VHFs infection and its severe process, and to research the prevention and treatment measures. This paper reviews the biological status of the infection of respiratory tract caused by common hemorrhagic fever viruses such as dengue virus, hantavirus and Ebola virus.

[1]
Yu X, Cheng G. Contribution of phylogenetics to understanding the evolution and epidemiology of dengue virus[J]. Animal Model Exp Med,2022,5(5):410-417.
[2]
Crowcroft NS, Infuso A, Ilef D, et al. Risk factors for human hantavirus infection: Franco-Belgian collaborative case-control study during 1995-6 epidemic[J]. BMJ,1999,318(7200):1737-1738.
[3]
Lee YR, Su CY, Chow NH, et al. Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES[J]. Virus Res,2007,126(1-2):216-225.
[4]
Wei X, Meng B, Peng H, et al. Hemorrhagic fever with renal syndrome caused by destruction of residential area of rodent in a construction site: epidemiological investigation[J]. BMC Infect Dis,2022,22(1):761.
[5]
杨晓燕, 聂俊峰, 赵莹, 等. 2015-2019年广州市番禺区598例登革热患者感染特征[J]. 热带医学杂志,2021,21(12):1597-1600.
[6]
Qiu M, Zhao L, Zhang J, et al. Effective infection with dengue virus in experimental neonate and adult mice through the intranasal route[J]. Viruses,2022,14(7):1394.
[7]
Rojek A, Horby P, Dunning J. Insights from clinical research completed during the west Africa Ebola virus disease epidemic[J]. Lancet Infect Dis,2017,17(9):e280-e92.
[8]
Uyeki TM, Mehta AK, Davey RT,et al. Clinical management of Ebola virus disease in the United States and Europe[J]. N Engl J Med,2016,374(7):636-646.
[9]
Johnson E, Jaax N, White J, et al. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus[J]. Int J Exp Pathol,1995,76(4):227-236.
[10]
Reed DS, Lackemeyer MG, Garza NL, et al. Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: differences in disease course and clinical pathology[J]. Microbes Infect,2011,13(11):930-936.
[11]
Weingartl HM, Embury-Hyatt C, Nfon C, et al. Transmission of Ebola virus from pigs to non-human primates[J]. Sci Rep,2012,2(1):811.
[12]
Nfon CK, Leung A, Smith G, et al. Immunopathogenesis of severe acute respiratory disease in Zaire ebolavirus-infected pigs[J]. PLoS One,2013,8(4):e61904.
[13]
Rasmuson J, Lindqvist P, Sörensen K, et al. Cardiopulmonary involvement in Puumala hantavirus infection[J]. BMC Infect Dis,2013,13:501.
[14]
Rasmuson J, Pourazar J, Linderholm M, et al. Presence of activated airway T lymphocytes in human puumala hantavirus disease[J]. Chest,2011,140(3):715-722.
[15]
Hägele S, Nusshag C, Müller A, et al. Cells of the human respiratory tract support the replication of pathogenic Old World orthohantavirus Puumala[J]. Virol J,2021,18(1):169.
[16]
Bourquain D, Bodenstein C, Schürer S, et al. Puumala and Tula virus differ in replication kinetics and innate immune stimulation in human endothelial cells and macrophages[J]. Viruses,2019,11(9):855.
[17]
Mayor J, Torriani G, Rothenberger S, et al. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins[J]. Virology,2020,543(4):54-62.
[18]
Torriani G, Mayor J, Zimmer G, et al. Macropinocytosis contributes to hantavirus entry into human airway epithelial cells[J]. Virology,2019,531(6):57-68.
[19]
Solà-Riera C, García M, Ljunggren HG, et al. Hantavirus inhibits apoptosis by preventing mitochondrial membrane potential loss through up-regulation of the pro-survival factor BCL-2[J]. PLoS Pathog,2020,16(2):e1008297.
[20]
Martínez VP, Di Paola N, Alonso DO, et al. "Super-spreaders" and person-to-person transmission of Andes virus in Argentina[J]. N Engl J Med,2020,383(23):2230-2241.
[21]
Sundström KB, Nguyen Hoang AT, Gupta S, et al. Andes Hantavirus-infection of a 3D human lung tissue model reveals a late peak in Progeny virus production followed by increased levels of proinflammatory cytokines and VEGF-A[J]. PLoS One,2016,11(2):e0149354.
[22]
Rowe RK, Pekosz A. Bidirectional virus secretion and nonciliated cell tropism following Andes virus infection of primary airway epithelial cell cultures[J]. J Virol,2006,80(3):1087-1097.
[23]
Deng B, Zhou B, Zhang S, et al. Clinical features and factors associated with severity and fatality among patients with severe fever with thrombocytopenia syndrome Bunyavirus infection in Northeast China[J]. PLoS One,2013,8(11):e80802.
[24]
Min YQ, Ning YJ, Wang H, et al. A RIG-1-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination[J]. J Biol Chem,2020,295(28):9691-711.
[25]
Katti R, Shahapur PR, Udapudi KL. Impact of Chikungunya virus infection on oral health status: an observational study[J]. Indian J Dent Res,2011,22(4):613.
[26]
De Caluwé L, Heyndrickx L, Coppens S, et al. Chikungunya virus’ high genomic plasticity enables rapid adaptation to restrictive A549 cells[J]. Viruses,2022,14(2):282.
[27]
Wikan N, Sakoonwatanyoo P, Ubol S, et al. Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage[J]. PLoS One,2012,7(1):e31102.
[1] 钱雅君, 虞竹溪, 徐颖, 董丹江, 顾勤. 危重型新型冠状病毒感染合并侵袭性肺曲霉病的临床特征和高危因素分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 3-9.
[2] 李晓宇, 许昕, 谌诚, 张萌, 韩文科, 林健. 肾移植受者新型冠状病毒感染合并肺炎支原体感染临床特点及诊疗分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 354-357.
[3] 刘路浩, 张鹏, 陈荣鑫, 郭予和, 尹威, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 奈玛特韦/利托那韦治疗肾移植术后重型新型冠状病毒肺炎的临床效果分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 349-353.
[4] 胡菊英, 李银华, 洪兰, 王宏勇, 丁先军, 李承美, 谭心海. 儿童感染大叶性肺炎与支气管肺炎临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 813-816.
[5] 陈冬丽, 邓迎丽, 毕婧. α-干扰素治疗急性呼吸道病毒感染对Th1/Th2平衡及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 590-594.
[6] 刘静, 徐爽, 缪亚军. 肺腺癌miR-3653表达与高危型人乳头瘤病毒感染及预后的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 600-604.
[7] 马壮, 张晶. 人博卡病毒合并急性呼吸道感染的临床特点及病原菌检出[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 841-844.
[8] 邢媛媛, 蒋军红, 谢海琴, 吕学东. 肺恶性肿瘤继发下呼吸道感染病原学特点及耐药分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 779-783.
[9] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[10] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[11] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[12] 倪世豪, 董晓明, 刘浩辉, 何星灵, 刘东华, 李姿儒, 李思静, 姜艳辉, 黄婕, 张小娇, 鲁路, 杨忠奇. 治疗新型冠状病毒感染中成药的临床证据分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1253-1269.
[13] 温淑娴, 黄园尹, 林志坚, 向波, 林勇平. 新型冠状病毒流行前后儿童肺炎支原体和常见急性呼吸道病毒谱变化趋势研究[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(02): 103-109.
[14] 吴敬芳, 谭清实, 郗夏颖, 樊节敏, 韩蕾, 辛美云. 鲁西南地区儿童呼吸道合胞病毒肺炎临床特征分析[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 44-49.
[15] 张宇, 王林. 急诊内科老年新型冠状病毒感染患者低钠血症发生情况调查分析[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 10-14.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?