切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 12 -15. doi: 10.3877/cma.j.issn.1674-1358.2023.01.003

综述

出血热病毒感染呼吸道研究进展
张凯玄1, 梁燕2, 石红妍3, 郑煦暘4, 连建奇4, 张欠欠1,()   
  1. 1. 716000 延安市,延安大学医学院病原生物学教研室
    2. 710038 西安市,空军军医大学第二附属医院传染科;710038 西安市,西北大学生命科学学院微生物学教研室
    3. 716000 延安市,延安大学医学院病原生物学教研室;710038 西安市,空军军医大学第二附属医院传染科
    4. 710038 西安市,空军军医大学第二附属医院传染科
  • 收稿日期:2022-12-27 出版日期:2023-02-15
  • 通信作者: 张欠欠
  • 基金资助:
    陕西省重点研发计划项目(No. 2021SF-230); 榆林市科技项目(No. CXY-2020-064); 校产学研项目(No. CXY202121)

Research progress on the infection of hemorrhagic fever viruses to respiratory tract

Kaixuan Zhang1, Yan Liang2, Hongyan Shi3, Xuyang Zheng4, Jianqi Lian4, Qianqian Zhang1,()   

  1. 1. Department of Pathogenic Biology, Medicine of Yan’an University School, Yan’an 716000, China
    2. Department of Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi’an 710038, China; Department of Microbiology, Life Sciences of Northwest University, Xi’an 710038, China
    3. Department of Pathogenic Biology, Medicine of Yan’an University School, Yan’an 716000, China; Department of Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi’an 710038, China
    4. Department of Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi’an 710038, China
  • Received:2022-12-27 Published:2023-02-15
  • Corresponding author: Qianqian Zhang
引用本文:

张凯玄, 梁燕, 石红妍, 郑煦暘, 连建奇, 张欠欠. 出血热病毒感染呼吸道研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 12-15.

Kaixuan Zhang, Yan Liang, Hongyan Shi, Xuyang Zheng, Jianqi Lian, Qianqian Zhang. Research progress on the infection of hemorrhagic fever viruses to respiratory tract[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(01): 12-15.

病毒性出血热(VHFs)是一类由多种病毒感染引起的以发热、休克和出血等为主要临床表现的急性传染病。VHFs在全球广泛分布,部分病死率较高,严重危害人类健康。近年来,登革热、肾综合征出血热、埃博拉病毒病等VHFs仍持续流行或出现局部暴发,成为全球严重的公共卫生威胁。目前有关VHFs感染发病机制的研究仍不尽完善,且多数此类疾病尚无特异性治疗手段。呼吸道既是人体暴露于出血热病毒的重要途径,也是机体对其产生免疫反应的重要,还是多种VHFs出现损伤的重要器官;研究出血热病毒对呼吸道的感染,揭示出血热病毒引起呼吸道病变的机制,对研究VHFs感染发病及其重症化过程、研究防治措施具有重要意义。本文对登革病毒、汉坦病毒和埃博拉病毒等常见出血热病毒对呼吸道的感染及其生物学研究现状进行综述。

Viral hemorrhagic fevers (VHFs) is a group of acute infectious diseases caused by a variety of viruses with fever, shock and hemorrhage as the main clinical symptoms. VHFs are globally spreaded and with a high mortality, posing a serious risk to human health. In recent years, VHFs such as dengue fever, hemorrhagic fever with renal syndrome and Ebola virus disease had continued to be prevalent, posing a serious challenge to global public health security. The pathogenesis of VHFs are still not well studied and there is no specific treatment for most of these diseases. The respiratory tract is not only an important way for the human body to be exposed to hemorrhagic fever virus, but also an important site for the body to produce immune response, and an important organ for damage in various VHFs. It is of great significance to study the infection of respiratory tract and reveal the mechanism of respiratory tract lesions caused by hemorrhagic fever virus, which is of great significance to investigate the pathogenesis of VHFs infection and its severe process, and to research the prevention and treatment measures. This paper reviews the biological status of the infection of respiratory tract caused by common hemorrhagic fever viruses such as dengue virus, hantavirus and Ebola virus.

[1]
Yu X, Cheng G. Contribution of phylogenetics to understanding the evolution and epidemiology of dengue virus[J]. Animal Model Exp Med,2022,5(5):410-417.
[2]
Crowcroft NS, Infuso A, Ilef D, et al. Risk factors for human hantavirus infection: Franco-Belgian collaborative case-control study during 1995-6 epidemic[J]. BMJ,1999,318(7200):1737-1738.
[3]
Lee YR, Su CY, Chow NH, et al. Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES[J]. Virus Res,2007,126(1-2):216-225.
[4]
Wei X, Meng B, Peng H, et al. Hemorrhagic fever with renal syndrome caused by destruction of residential area of rodent in a construction site: epidemiological investigation[J]. BMC Infect Dis,2022,22(1):761.
[5]
杨晓燕, 聂俊峰, 赵莹, 等. 2015-2019年广州市番禺区598例登革热患者感染特征[J]. 热带医学杂志,2021,21(12):1597-1600.
[6]
Qiu M, Zhao L, Zhang J, et al. Effective infection with dengue virus in experimental neonate and adult mice through the intranasal route[J]. Viruses,2022,14(7):1394.
[7]
Rojek A, Horby P, Dunning J. Insights from clinical research completed during the west Africa Ebola virus disease epidemic[J]. Lancet Infect Dis,2017,17(9):e280-e92.
[8]
Uyeki TM, Mehta AK, Davey RT,et al. Clinical management of Ebola virus disease in the United States and Europe[J]. N Engl J Med,2016,374(7):636-646.
[9]
Johnson E, Jaax N, White J, et al. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus[J]. Int J Exp Pathol,1995,76(4):227-236.
[10]
Reed DS, Lackemeyer MG, Garza NL, et al. Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: differences in disease course and clinical pathology[J]. Microbes Infect,2011,13(11):930-936.
[11]
Weingartl HM, Embury-Hyatt C, Nfon C, et al. Transmission of Ebola virus from pigs to non-human primates[J]. Sci Rep,2012,2(1):811.
[12]
Nfon CK, Leung A, Smith G, et al. Immunopathogenesis of severe acute respiratory disease in Zaire ebolavirus-infected pigs[J]. PLoS One,2013,8(4):e61904.
[13]
Rasmuson J, Lindqvist P, Sörensen K, et al. Cardiopulmonary involvement in Puumala hantavirus infection[J]. BMC Infect Dis,2013,13:501.
[14]
Rasmuson J, Pourazar J, Linderholm M, et al. Presence of activated airway T lymphocytes in human puumala hantavirus disease[J]. Chest,2011,140(3):715-722.
[15]
Hägele S, Nusshag C, Müller A, et al. Cells of the human respiratory tract support the replication of pathogenic Old World orthohantavirus Puumala[J]. Virol J,2021,18(1):169.
[16]
Bourquain D, Bodenstein C, Schürer S, et al. Puumala and Tula virus differ in replication kinetics and innate immune stimulation in human endothelial cells and macrophages[J]. Viruses,2019,11(9):855.
[17]
Mayor J, Torriani G, Rothenberger S, et al. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins[J]. Virology,2020,543(4):54-62.
[18]
Torriani G, Mayor J, Zimmer G, et al. Macropinocytosis contributes to hantavirus entry into human airway epithelial cells[J]. Virology,2019,531(6):57-68.
[19]
Solà-Riera C, García M, Ljunggren HG, et al. Hantavirus inhibits apoptosis by preventing mitochondrial membrane potential loss through up-regulation of the pro-survival factor BCL-2[J]. PLoS Pathog,2020,16(2):e1008297.
[20]
Martínez VP, Di Paola N, Alonso DO, et al. "Super-spreaders" and person-to-person transmission of Andes virus in Argentina[J]. N Engl J Med,2020,383(23):2230-2241.
[21]
Sundström KB, Nguyen Hoang AT, Gupta S, et al. Andes Hantavirus-infection of a 3D human lung tissue model reveals a late peak in Progeny virus production followed by increased levels of proinflammatory cytokines and VEGF-A[J]. PLoS One,2016,11(2):e0149354.
[22]
Rowe RK, Pekosz A. Bidirectional virus secretion and nonciliated cell tropism following Andes virus infection of primary airway epithelial cell cultures[J]. J Virol,2006,80(3):1087-1097.
[23]
Deng B, Zhou B, Zhang S, et al. Clinical features and factors associated with severity and fatality among patients with severe fever with thrombocytopenia syndrome Bunyavirus infection in Northeast China[J]. PLoS One,2013,8(11):e80802.
[24]
Min YQ, Ning YJ, Wang H, et al. A RIG-1-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination[J]. J Biol Chem,2020,295(28):9691-711.
[25]
Katti R, Shahapur PR, Udapudi KL. Impact of Chikungunya virus infection on oral health status: an observational study[J]. Indian J Dent Res,2011,22(4):613.
[26]
De Caluwé L, Heyndrickx L, Coppens S, et al. Chikungunya virus’ high genomic plasticity enables rapid adaptation to restrictive A549 cells[J]. Viruses,2022,14(2):282.
[27]
Wikan N, Sakoonwatanyoo P, Ubol S, et al. Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage[J]. PLoS One,2012,7(1):e31102.
[1] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[2] 方辉, 郑武田, 范晓鋆, 刘梦莹. 连花清瘟颗粒联合帕拉米韦对儿童病毒性急性上呼吸道感染的疗效及免疫功能影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 350-356.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[5] 戚若晨, 马帅军, 韩士超, 王国辉, 刘克普, 张小燕, 杨晓剑, 秦卫军. 肾移植术后新型冠状病毒感染单中心诊疗经验[J]. 中华移植杂志(电子版), 2023, 17(04): 232-239.
[6] 刘路浩, 苏泳鑫, 曾丽娟, 张鹏, 陈荣鑫, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 新型冠状病毒感染疫情期间肾移植受者免疫抑制剂服药依从性研究[J]. 中华移植杂志(电子版), 2023, 17(03): 140-145.
[7] 陈琦, 郭嘉瑜, 陈忠宝, 马枭雄, 王天宇, 邹寄林, 张龙, 蔡治涛, 邱涛, 周江桥. 新型冠状病毒感染流行下我国器官捐献者筛选规则是否应时而变?[J]. 中华移植杂志(电子版), 2023, 17(02): 82-88.
[8] 郭长江, 冷建刚, 邵伟. 阿莫西林克拉维酸钾联合布地奈德治疗小儿反复细菌性呼吸道感染[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 394-396.
[9] 宋昕, 耿涛, 刘长春. 老年下呼吸道感染者血清25-羟维生素D3水平与血清炎症因子水平的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 215-217.
[10] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[11] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[12] 王希岗, 张波, 李鸣, 高敏, 薛建新. 神经外科手术部位感染在HIV感染者与非HIV感染者中的临床差异[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 228-233.
[13] 徐静媛, 谢波, 邱海波, 杨毅. 《重症医学》课程思政建设的探索与实践[J]. 中华重症医学电子杂志, 2023, 09(03): 265-268.
[14] 漆祎鸣, 潘文志, 朱风琴, 周达新, 葛均波. 新型冠状病毒感染后经导管主动脉瓣置换术安全性分析[J]. 中华心脏与心律电子杂志, 2023, 11(02): 105-108.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要