切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 337 -343. doi: 10.3877/cma.j.issn.1674-1358.2022.05.008

论著

儿童腺病毒肺炎严重程度预测列线图的构建及验证
孙小艳1,(), 赵淑玲1, 王晓莹1   
  1. 1. 221000 徐州市,徐州医科大学附属徐州儿童医院呼吸内科
  • 收稿日期:2022-04-27 出版日期:2022-10-15
  • 通信作者: 孙小艳

Construction and validation of a nomogram for predicting the severity of adenovirus pneumonia in children

Xiaoyan Sun1,(), Shuling Zhao1, Xiaoying Wang1   

  1. 1. Department of Respiratory Medicine, Xuzhou Children’s Hospital Affiliated to Xuzhou Medical University, Xuzhou 221000, China
  • Received:2022-04-27 Published:2022-10-15
  • Corresponding author: Xiaoyan Sun
引用本文:

孙小艳, 赵淑玲, 王晓莹. 儿童腺病毒肺炎严重程度预测列线图的构建及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 337-343.

Xiaoyan Sun, Shuling Zhao, Xiaoying Wang. Construction and validation of a nomogram for predicting the severity of adenovirus pneumonia in children[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2022, 16(05): 337-343.

目的

开发一款用于指导临床准确评估儿童腺病毒肺炎严重程度的列线图模型,并进行验证。

方法

采用回顾性、横断面临床观察法,纳入2019年8月至2021年8月于徐州医科大学附属徐州儿童医院诊断为腺病毒肺炎患儿共128例为研究对象,均符合儿童腺病毒性肺炎诊断和治疗指南(2019版)的标准;住院期间参照社区获得性肺炎诊断标准分为重症组(50例)和非重症组(78例),比较两组患儿的性别、年龄、体重、是否早产、发热持续时间、体温峰值、有无基础疾病、血清白细胞计数、中性粒细胞和淋巴细胞百分比、C-反应蛋白(CRP)、乳酸、白细胞介素(IL)-6、乳酸脱氢酶(LDH)、降钙素原(PCT)、CD4+ T和CD8+ T淋巴细胞百分比、CD4+/CD8+ T、CD16+CD56+和CD19+ T淋巴细胞百分比、有无混合感染。采用LASSO回归法对危险因素进行降维处理,采用多因素Logistic回归分析筛选独立危险因素,根据回归系数(β)绘制列线图预测模型。采用受试者工作曲线(ROC)计算模型预测重症腺病毒肺炎(SAP)曲线下面积(AUC),Hosmer-Lemeshow检验评估模型的拟合优度,Calibration曲线和Decision曲线评估模型的一致性和获益性。

结果

与非重症组比较,重症组患儿发热持续时间延长[5.2(3.0,8.5)d vs. 2.9(1.0,5.0)d:Z = 8.326、P < 0.001]、IL-6 [45.6(35.4,56.9) pg/ml vs. 30.2(25.2,38.6) pg/ml:Z = 15.326,P < 0.001]和LDH水平[452.6 (385.6,523.4)U/L vs. 365.9(302.1,445.2)U/L:Z = 9.625、P < 0.001]升高、CD4+ T [31.2(27.8,34.2)% vs. 35.5(33.2,38.9)%:Z = 7.526,P < 0.001]和CD4+/CD8+ T水平[1.2(1.0,1.4)vs. 1.4(1.1,1.6):Z = 5.230、P = 0.004]下降、混合感染率增多[46.0%(23/50)vs. 19.2%(15/78):χ2 = 10.460、P = 0.001]。LASSO回归共筛选出4个具有非零系数特征的变量,即发热持续时间、IL-6浓度、CD4+ T淋巴细胞百分比和混合感染。多因素Logistic回归分析显示,发热持续时间(OR = 3.125、95%CI:2.565~3.896、P < 0.001)、IL-6浓度(OR = 2.012,95%CI:1.428~2.639、P < 0.001)、CD4+ T淋巴细胞百分比(OR = 0.369、95%CI:0.124~0.678、P = 0.009)和混合感染(OR = 1.457、95%CI:1.124~1.895,P = 0.001)均为SAP的独立危险因素。建立列线图模型总分160分,ROC显示列线图预测SAP的AUC值为0.852(95%CI:0.779~0.901,P < 0.001)。Hosmer-Lemeshow检验值为0.786,提示模型拟合优度较高。Calibration曲线和Decision曲线显示模型一致性和获益性尚可。

结论

影响儿童腺病毒肺炎严重程度的主要因素有发热持续时间、IL-6浓度、CD4+ T淋巴细胞百分比和混合感染,以此开发的列线图预测模型来评估SAP,操作简单、可视化效果强,有较高的效能和拟合优度,一致性和获益性尚好,具有较好的临床应用价值。

Objective

To develop a nomogram model for guiding clinical accurate evaluation on the severity of adenovirus pneumonia in children, and carry out the internal validation.

Methods

Total of 128 children with adenoviral pneumonia diagnosis in Xuzhou Children’s Hospital Affiliated to Xuzhou Medical University from August 2019 to August 2021 were included, retrospectively, who all met the criteria of the guideline for the diagnosis and treatment of adenoviral pneumonia in children (2019 Edition). During hospitalization, according to the diagnostic criteria of community-acquired pneumonia, 128 cases were divided into severe group (50 cases) and non-severe group (78 cases). The gender, age, weight, premature delivery, duration of fever, peak body temperature, basic diseases, serum leukocyte count, percentage of neutrophils and lymphocytes, C-reactive protein (CRP), lactic acid, interleukin (IL)-6, lactate dehydrogenase (LDH), procalcitonin (PCT), percentage of CD4+ T and CD8+ T lymphocytes, CD4+/CD8+, CD16+CD56+ and CD19+ T lymphocytes, and mixed infection were compared between the two groups. The dimension of risk factors was reduced by LASSO regression, then the independent risk factors were screened by multivariate Logistic regression analysis, nomogram predictive model was drawn according to the regression coefficient (β). The area under the curve (AUC) of model for severe adenovirus pneumonia (SAP) prediction was calculated by receiver operating curve (ROC), and the goodness of fit of the model was evaluated by Hosmer-Lemeshow test, consistency and benefit of the model were evaluated by calibration curve and decision curve.

Results

Compared with non-severe group, Univariate comparison showed that the duration of fever was longer [5.2 (3.0, 8.5) d vs. 2.9 (1.0, 5.0) d; Z = 8.326, P < 0.001], concentrations of IL-6 [45.6 (35.4, 56.9) pg/ml vs. 30.2 (25.2, 38.6) pg/ml; Z = 15.326, P < 0.001] and LDH were higher [452.6 (385.6, 523.4) U/L vs. 365.9 (302.1, 445.2) U/L; Z = 9.625, P < 0.001], levels of CD4+ T [31.2 (27.8, 34.2)% vs. 35.5 (33.2, 38.9)%; Z = 7.526, P < 0.001] and CD4+/CD8+ were lower [1.2 (1.0, 1.4) vs. 1.4 (1.1, 1.6); Z = 5.230, P = 0.004], and the rate of mixed infection was higher in severe group [46.0% (23/50) vs. 19.2% (15/78); χ2 = 10.460, P = 0.001]. LASSO regression screened four variables with non-zero coefficients, namely duration of fever, IL-6 concentration, CD4+ T lymphocyte percentage and mixed infection. Multivariate Logistic regression analysis showed that duration of fever (OR = 3.125, 95%CI: 2.565-3.896, P < 0.001), IL-6 concentration (OR = 2.012, 95%CI: 1.428-2.639, P < 0.001), CD4+ T lymphocyte percentage (OR = 0.369, 95%CI: 0.124-0.678, P = 0.009) and mixed infection (OR = 1.457, 95%CI: 1.124-1.895, P = 0.001) were the independent risk factors for SAP. The total score of nomogram model was 160. ROC showed that the AUC value of nomogram for predicting SAP was 0.852 (95%CI: 0.779-0.901, P < 0.001). The Hosmer-Lemeshow test value was 0.786, suggesting that the goodness of fit of the model was high. The calibration curve and decision curve showed that the consistency and benefit of the model were acceptable.

Conclusions

The main factors affecting the severity of adenovirus pneumonia in children are the duration of fever, the concentration of IL-6, the percentage of CD4+ T lymphocytes and mixed infection. The developed nomogram prediction model to evaluate SAP has simple operation and strong visualization effect. It has high efficacy and goodness of fit, good consistency and benefit, and has good clinical application value.

表1 两组患儿的临床资料
临床资料 非重症组(78例) 重症组(50例) 统计量 P
男/女 41/37 28/22 χ2 = 0.145 0.704a
年龄[M(P25,P75),岁] 3.8(1.5,8.0) 3.5(1.0,7.0) Z = 0.563 0.501
体重[M(P25,P75),kg] 6.9(4.0,20.5) 6.6(3.5,18.5) Z = 0.869 0.223
早产[例(%)] 4(5.1) 3(6.0) χ2 = 0.045 0.832b
发热持续时间[M(P25,P75),d] 2.9(1.0,5.0) 5.2(3.0,8.5) Z = 8.326 < 0.001
体温峰值[M(P25,P75),℃] 39.7(39.0,40.0) 39.9(39.2,41.5) Z = 0.965 0.102
营养不良[例(%)] 7(9.0) 5(10.0) χ2 = 0.038 0.745b
肝炎[例(%)] 4(5.1) 3(6.0) χ2 = 0.045 0.869b
肾病[例(%)] 3(3.8) 2(4.0) χ2 = 0.002 0.965b
白细胞计数[M(P25,P75),× 109/L)] 9.6(7.5,12.5) 10.2(7.9,14.0) Z = 0.785 0.253
中性粒细胞[M(P25,P75),%] 70.5(66.9,74.5) 72.3(68.5,75.5) Z = 0.635 0.421
淋巴细胞[M(P25,P75),%] 32.3(30.1,35.4) 35.6(30.8,36.6) Z = 0.741 0.326
CRP [M(P25,P75),mg/L] 13.0(8.5,16.5) 13.5(9.0,18.2) Z = 0.596 0.522
乳酸[M(P25,P75),mmol/L] 2.5(2.2,2.8) 2.6(2.3,2.9) Z = 0.326 0.648
IL-6 [M(P25,P75),pg/ml] 30.2(25.2,38.6) 45.6(35.4,56.9) Z = 15.326 < 0.001
LDH [M(P25,P75),U/L] 365.9(302.1,445.2) 452.6(385.6,523.4) Z = 9.625 < 0.001
PCT [M(P25,P75),μg/L] 0.2(0.1,0.3) 0.3(0.1,0.5) Z = 0.669 0.421
CD4+ T [M(P25,P75),%] 35.5(33.2,38.9) 31.2(27.8,34.2) Z = 7.526 < 0.001
CD8+ T [M(P25,P75),%] 26.6(25.0,30.1) 26.8(25.5,30.9) Z = 1.002 0.121
CD4+/CD8+ T [M(P25,P75)] 1.4(1.1,1.6) 1.2(1.0,1.4) Z = 5.230 0.004
CD16+CD56+ T [M(P25,P75),%] 13.0(11.8,14.5) 12.6(11.5,13.9) Z = 0.653 0.302
CD19+ T [M(P25,P75),%] 19.9(18.5,22.5) 21.2(19.0,23.5) Z = 0.845 0.203
混合感染[例(%)] 15(19.2) 23(46.0) χ2 = 10.460 0.001a
图1 SAP危险因素的LASSO回归分析
表2 SAP危险因素Logistic回归分析
图2 SAP的列线图模型
图3 列线图模型预测SAP的ROC曲线
图4 列线图模型预测SAP发生的Calibration曲线
图5 列线图模型预测SAP发生的Decision曲线注:a:假设所有患儿均未采用列线图模型评估SAP发生风险;b:假设所有患儿均采用列线图模型评估SAP发生风险;c:列线图模型的决策曲线
[19]
Zhang R, Wang H, Tian S, et al. Adenovirus viremia may predict adenovirus pneumonia severity in immunocompetent children[J]. BMC Infect Dis,2021,21(1):213-215.
[20]
Moon SM, Choe J, Na SJ, et al. Comparative study on the effect of cidofovir treatment for severe adenovirus pneumonia[J]. J Intensive Care Med,2021,36(12):1436-1442.
[21]
廖蔻,代继宏,钟林平, 等. 基于决策曲线和剂量反应分析评估腺病毒载量对儿童感染重症腺病毒肺炎后发展为闭塞性细支气管炎的预测价值[J]. 中国循证儿科杂志,2019,14(5):342-346.
[22]
Jiang J, Wan R, Pan P, et al. Comparison of clinical, laboratory and radiological characteristics between COVID-19 and adenovirus pneumonia: A retrospective study[J]. Infect Drug Resist,2020,13(10):3401-3408.
[23]
黄淼,罗蓉,符州. 儿童重症腺病毒肺炎不良预后的危险因素分析[J]. 中国当代儿科杂志,2017,19(2):159-162.
[24]
彭力,钟礼立,黄振, 等. 儿童肺炎支原体肺炎合并腺病毒感染的临床观察[J]. 中国当代儿科杂志,2021,23(10):1033-1037.
[25]
Lou Q, Zhang SX, Yuan L. Clinical analysis of adenovirus pneumonia with pulmonary consolidation and atelectasis in children[J]. J Int Med Res,2021,49(2):154-157.
[1]
Zhong L, Lin J, Dai J. Risk factors for the development of bronchiolitis obliterans in children with severe adenovirus pneumonia: A retrospective study with dose-response analysis[J]. J Med Virol,2020,92(10):3093-3099.
[2]
林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版),2019,48(5):567-572.
[3]
靳丹丹,周卫芳,李嫣, 等. 儿童腺病毒肺炎的混合感染特点和重症病例的危险因素分析[J]. 临床肺科杂志,2019,24(10):1747-1750.
[4]
National Health Commission of the People’s Republic of China, State Administration of Traditional Chinese Medicine. Guideline for diagnosis and treatment of adenovirus pneumonia in children (2019 version)[J]. Chin J of Clin Infect Dis,2019,12(2):161-166.
[5]
李昌崇,尚云晓,沈叙庄, 等. 儿童社区获得性肺炎管理指南(2013修订)[J]. 中华儿科杂志,2013,51(11):856-862.
[6]
王心静,王仲元,刘晓, 等. 48例腺病毒55型所致急性呼吸系统感染者的临床特点[J/CD]. 中华实验和临床感染病杂志(电子版),2021,15(2):124-128.
[7]
Zampoli M, Mukuddem-Sablay Z. Adenovirus-associated pneumonia in South African children: Presentation, clinical course and outcome[J]. S Afr Med J,2017,107(16):123-126.
[8]
荣道香,宣爱丽,方姗姗, 等. 儿童腺病毒肺炎120例临床特征分析[J]. 中华全科医学,2020,18(7):1096-1098, 1142.
[9]
Cheng JL, Peng CC, Chiu NC, et al. Risk factor analysis and molecular epidemiology of respiratory adenovirus infections among children in northern Taiwan, 2009-2013[J]. J Microbiol Immunol Infect,2017,50(10):418-426.
[10]
Gu J, Su QQ, Zuo TT, et al. Adenovirus diseases: a systematic review and meta-analysis of 228 case reports[J]. Infection,2021,49(8):1-13.
[11]
Park JY, Kim BJ, Lee EJ, et al. Clinical features and courses of adenovirus pneumonia in healthy young adults during an outbreak among Korean Military Personnel[J]. PLoS One,2017,12(1):e0170592.
[12]
Yoo H, Oh J, Park C. Characteristics of fever and response to antipyretic therapy in military personnel with adenovirus-positive community-acquired pneumonia[J]. Mil Med Res,2020,7(2):6-8.
[13]
Chowdhury F, Shahid ASMSB, Ghosh PK, et al. Viral etiology of pneumonia among severely malnourished under-five children in an urban hospital, Bangladesh[J]. PLoS One,2020,15(3):e0228329.
[14]
Barnadas C, Schmidt DJ, Fischer TK, et al. Molecular epidemiology of human adenovirus infections in Denmark, 2011-2016[J]. J Clin Virol,2018,104(11):16-22.
[15]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm’ in COVID-19[J]. J Infect,2020,80(13):607-613.
[16]
Wu PQ, Zeng SQ, Yin GQ, et al. Clinical manifestations and risk factors of adenovirus respiratory infection in hospitalized children in Guangzhou, China during the 2011-2014 period[J]. Medicine (Baltimore),2020,99(6):e18584.
[17]
Sun J, Xiao Y, Zhang M, et al. Serum inflammatory markers in patients with adenovirus respiratory infection[J]. Med Sci Monit,2018,24(9):3848-3855.
[18]
Chen X, Lv J, Qin L, et al. Severe adenovirus pneumonia requiring extracorporeal membrane oxygenation support in immunocompetent children[J]. Front Pediatr,2020,8(4):162-164.
[1] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[2] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[3] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[4] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[5] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[6] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[7] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[8] 董大红, 周明虎, 李芝朋, 许正峰. 碳青霉烯类抗生素联合呼吸机治疗肺部感染的临床疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 793-796.
[9] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[10] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[11] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要