切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 295 -299. doi: 10.3877/cma.j.issn.1674-1358.2022.05.002

综述

儿童副流感病毒感染研究进展
孟一星1, 邓莉1,()   
  1. 1. 100020 北京,首都儿科研究所附属儿童医院感染科
  • 收稿日期:2021-12-27 出版日期:2022-10-15
  • 通信作者: 邓莉
  • 基金资助:
    北京市医院管理中心儿科学协同发展中心专项(No. XTCX201822)

Research progress on human parainfluenza viruses infection in children

Yixing Meng1, Li Deng1,()   

  1. 1. Department of Infectious Diseases, Capital Institute of Pediatrics Affiliated Children Hospital, Beijing 100020, China
  • Received:2021-12-27 Published:2022-10-15
  • Corresponding author: Li Deng
引用本文:

孟一星, 邓莉. 儿童副流感病毒感染研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 295-299.

Yixing Meng, Li Deng. Research progress on human parainfluenza viruses infection in children[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2022, 16(05): 295-299.

人副流感病毒(HPIVs)是引起儿童急性上、下呼吸道感染的一种重要病毒,属于副黏病毒科,分为4个亚型(HPIV1~4),其中HPIV1、2多在秋季流行,是导致儿童喉炎的主要病原体;HPIV3于春季、秋季均可流行,可导致新生儿及婴儿毛细支气管炎、肺炎;HPIV4感染多症状轻微,占比较低,相关数据较少。在全球范围内,HPIV是引起儿童喉炎、气管支气管炎、毛细支气管炎和肺炎等急性呼吸道感染疾病的常见病原,因其感染就诊、住院人数众多,且导致免疫功能低下人群病重、病死率增加,造成了沉重的疾病负担。HPIV感染的确诊依赖病原学检测,其中核酸检测灵敏度、特异度高,目前在临床应用范围越来越广。虽然目前尚无针对该病毒的特效药物,但重组神经氨酸酶融合蛋白DAS181,以及神经氨酸酶抑制剂BCX2798和BCX2855的相关研究不断进展。另外,针对HPIV的多种疫苗目前已进入了临床试验阶段。本综述总结HPIV感染的病毒学特征、流行病学特征、临床表现、诊断及治疗,以及疫苗方面的相关内容及研究进展,以供临床医师参考。

Human parainfluenza viruses (HPIVs) are important viruses which cause acute upper and lower respiratory tract infections in children. They belong to the Paramyxoviridae family and are divided into four subtypes (HPIV1-4). HPIV1 and HPIV2, which are mainly prevalent in autumn, are the main cause of laryngitis in children. HPIV3 causes epidemic in spring and autumn, often causing neonatal and infant bronchiolitis and pneumonia. Symptoms of HPIV4 infection are mostly mild, accounting for a relatively low proportion of the relevant data. Globally, HPIVs are common causes of acute respiratory tract infections in children, such as laryngitis, tracheobronchitis, bronchiolitis, pneumonia and so on. Heavy disease burden was resulted from the large numbers of outpatients and inpatients, as well as the high rates of severity and fatality among immunocompromised. The diagnosis depends on the pathogen detection, among which nupopulationcleic acid detection has high sensitivity and specificity, and is now being used more and more widely in clinical applications. Although there is no specific drug for the virus at present, studies on recombinant neuraminidase fusion protein DAS181, and neuraminidase inhibitors BCX2798 and BCX2855 are progressing. Breakthroughs on the treatment of the virus will be completed in the near future. In addition, several vaccines against HPIVs are currently in clinical trials. In this review, the virology, epidemiology, clinical manifestations, diagnosis, treatment, and vaccines of human parainfluenza viruses are summarized for clinical reference.

[1]
Henrickson KJ. Parainfluenza viruses[J]. Clin Microbiol Rev,2003,16(2):242-264.
[2]
Jiang J, Wen H, Chi M, et al. Functional analysis of amino acids at stalk/head interface of human parainfluenza virus type 3 hemagglutinin-neuraminidase protein in the membrane fusion process[J]. Virus Genes,2018,54(3):333-342.
[3]
Takimoto T, Murti KG, Bousse T, et al. Role of matrix and fusion proteins in budding of Sendai virus[J]. J Virol,2001,75(23):11384-11391.
[4]
Cevik B, Smallwood S, Moyer SA. The L-L oligomerization domain resides at the very N-terminus of the sendai virus L RNA polymerase protein[J]. Virology,2003,313(2):525-536.
[5]
Schomacker H, Schaap-Nutt A, Collins PL, et al. Pathogenesis of acute respiratory illness caused by human parainfluenza viruses[J]. Curr Opin Virol,2012,2(3):294-299.
[6]
Spriggs MK, Murphy BR, Prince GA, et al. Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity[J]. J Virol,1987,61(11):3416-3423.
[7]
Aguayo-Hiraldo PI, Arasaratnam RJ, Tzannou I, et al. Characterizing the cellular immune response to parainfluenza virus 3[J]. J Infect Dis,2017,216(2):153-161.
[8]
Fry AM, Curns AT, Harbour K, et al. Seasonal trends of human parainfluenza viral infections: United States, 1990-2004[J]. Clin Infect Dis,2006,43(8):1016-1022.
[9]
Chew FT, Doraisingham S, Ling AE, et al. Seasonal trends of viral respiratory tract infections in the tropics[J]. Epidemiol Infect,1998,121(1):121-128.
[10]
Marx A, Torok TJ, Holman RC, et al. Pediatric hospitalizations for croup (laryngotracheobronchitis): biennial increases associated with human parainfluenza virus 1 epidemics[J]. J Infect Dis,1997,176(6):1423-1427.
[11]
Vachon ML, Dionne N, Leblanc E, et al. Human parainfluenza type 4 infections, Canada[J]. Emerg Infect Dis,2006,12(11):1755-1758.
[12]
Wang X, Li Y, Deloria-Knoll M, et al. Global burden of acute lower respiratory infection associated with human parainfluenza virus in children younger than 5 years for 2018: a systematic review and meta-analysis[J]. Lancet Glob Health,2021,9(8):e1077-e1087.
[13]
Rafeek RAM, Divarathna MVM, Noordeen F. A review on disease burden and epidemiology of childhood parainfluenza virus infections in Asian countries[J]. Rev Med Virol,2021,31(2):e2164.
[14]
Reed G, Jewett PH, Thompson J, et al. Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children < 5 years old[J]. J Infect Dis,1997,175(4):807-813.
[15]
Wang X, Li Y, Mei X, et al. Global hospital admissions and in-hospital mortality associated with all-cause and virus-specific acute lower respiratory infections in children and adolescents aged 5-19 years between 1995 and 2019: a systematic review and modelling study[J]. BMJ Glob Health,2021,6(7):e006014.
[16]
Shi T, McLean K, Campbell H, et al. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis[J]. J Glob Health,2015,5(1):010408.
[17]
Knott AM, Long CE, Hall CB. Parainfluenza viral infections in pediatric outpatients: seasonal patterns and clinical characteristics[J]. Pediatr Infect Dis J,1994,13(4):269-273.
[18]
吴泽刚,黎知青,顾剑, 等. 武汉地区儿童急性呼吸道感染的常见病原检测[J]. 实用预防医学,2019,26(2):133-137.
[19]
刘文渊,张艺之,周城波, 等. 基于多重RT-PCR检测法的儿童呼吸道病原体流行特征[J]. 中华实验和临床病毒学杂志,2021,35(4):467-471.
[20]
Henrickson KJ, Hoover S, Kehl KS, et al. National disease burden of respiratory viruses detected in children by polymerase chain reaction[J]. Pediatr Infect Dis J,2004,23(Suppl 1):S11-S18.
[21]
Henrickson KJ, Kuhn SM, Savatski LL. Epidemiology and cost of infection with human parainfluenza virus types 1 and 2 in young children[J]. Clin Infect Dis,1994,18(5):770-779.
[22]
Rosychuk RJ, Klassen TP, Metes D, et al. Croup presentations to emergency departments in Alberta, Canada: a large population-based study[J]. Pediatr Pulmonol,2010,45(1):83-91.
[23]
Sofer S, Dagan R, Tal A. The need for intubation in serious upper respiratory tract infection in pediatric patients (a retrospective study)[J]. Infection,1991,19(3):131-134.
[24]
Thompson M, Vodicka TA, Blair PS, et al. Duration of symptoms of respiratory tract infections in children: systematic review[J]. BMJ,2013,347:f7027.
[25]
Slavin KA, Passaro DJ, Hacker JK, et al. Parainfluenza virus type 4: case report and review of the literature[J]. Pediatr Infect Dis J,2000,19(9):893-896.
[26]
Counihan ME, Shay DK, Holman RC, et al. Human parainfluenza virus-associated hospitalizations among children less than five years of age in the United States[J]. Pediatr Infect Dis J,2001,20(7):646-653.
[27]
Denny FW. The clinical impact of human respiratory virus infections[J]. Am J Respir Crit Care Med,1995,152(4 Pt 2):S4-12.
[28]
Lujan-Zilbermann J, Benaim E, Tong X, et al. Respiratory virus infections in pediatric hematopoietic stem cell transplantation[J]. Clin Infect Dis,2001,33(7):962-968.
[29]
MacDonald NE, Wolfish N, McLaine P, et al. Role of respiratory viruses in exacerbations of primary nephrotic syndrome[J]. J Pediatr,1986,108(3):378-382.
[30]
Wilks D, Burns SM. Myopericarditis associated with parainfluenza virus type 3 infection[J]. Eur J Clin Microbiol Infect Dis,1998,17(5):363-365.
[31]
Vreede RW, Schellekens H, Zuijderwijk M. Isolation of parainfluenza virus type 3 from cerebrospinal fluid[J]. J Infect Dis,1992,165(6):1166.
[32]
Nolte FS, Marshall DJ, Rasberry C, et al. MultiCode-PLx system for multiplexed detection of seventeen respiratory viruses[J]. J Clin Microbiol,2007,45(9):2779-2786.
[33]
Hierholzer JC, BinglamPG, Coombs RA,et al. Comparison of monoclonal antibody time-resolved fluoroimmunoassay with monoclonal antibody capture-biotinylated detector enzyme immunoassay for respiratory syncytial virus and parainfluenza virus antigen detection[J]. J Clin Microbiol,1989,27(6):1243-1249.
[34]
Selvaraju SB, Selvarangan R. Evaluation of xTAG respiratory viral panel FAST and xTAG human parainfluenza virus analyte-specific reagents for detection of human parainfluenza viruses in respiratory specimens[J]. Diagn Microbiol Infect Dis,2012,72(3):278-281.
[35]
Nichols WG, Gooley T, Boeckh M. Community-acquired respiratory syncytial virus and parainfluenza virus infections after hematopoietic stem cell transplantation: the Fred Hutchinson Cancer Research Center experience[J]. Biol Blood Marrow Transplant,2001,7(Suppl): S11-S15.
[36]
Drozd DR, Limaye AP, Moss RB, et al. DAS181 treatment of severe parainflfluenza type 3 pneumonia in a lung transplant recipient[J]. Transpl Infect Dis,2013,15(1):E28-E32.
[37]
Chemaly RF, Marty FM, Wolfe CR, et al. DAS181 treatment of severe lower respiratory tract parainfluenza virus infection in immunocompromised patients: A phase 2 randomized, placebo-controlled study[J]. Clin Infect Dis,2021,73(3):e773-e781.
[38]
Watanabe M, Mishin VP, Brown SA, et al. Effect of hemagglutinin-neuraminidase inhibitors BCX 2798 and BCX 2855 on growth and pathogenicity of Sendai/human parainfluenza type 3 chimera virus in mice[J]. Antimicrob Agents Chemother,2009,53(9):3942-3951.
[39]
Eveno T, Dirr L, El-Deeb IM, et al. Targeting human parainfluenza virus type-1 haemagglutinin-neuraminidase with mechanism-based inhibitors[J]. Viruses,2019,11(5):417.
[40]
Karron RA, Makhene M, Gay K, et al. Evaluation of a live attenuated bovine parainfluenza type 3 vaccine in two- to six-month-old infants[J]. Pediatr Infect Dis J,1996,15(8):650-654.
[41]
Greenberg DP, Walker RE, Lee MS, et al. A bovine parainfluenza virus type 3 vaccine is safe and immunogenic in early infancy[J]. J Infect Dis,2005,191(7):1116-1122.
[42]
Madhi SA, Cutland C, Zhu Y, et al. Transmissibility, infectivity and immunogenicity of a live human parainfluenza type 3 virus vaccine (HPIV3cp45) among susceptible infants and toddlers[J]. Vaccine,2006,24(13):2432-2439.
[43]
Karron RA, Casey R, Thumar B, et al. The cDNA-derived investigational human parainfluenza virus type 3 vaccine rcp45 is well tolerated, infectious, and immunogenic in infants and young children[J]. Pediatr Infect Dis J,2011,30(10):e186-e191.
[44]
Englund JA, Karron RA, Cunningham CK, et al. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children[J]. Vaccine,2013,31(48):5706-5712.
[45]
Garg R, Brownlie R, Latimer L, et al. Vaccination with a human parainfluenza virus type 3 chimeric FHN glycoprotein formulated with a combination adjuvant induces protective immunity[J]. Vaccine,2017,35(51):7139-7146.
[46]
Garg R, Brownlie R, Latimer L, et al. A chimeric glycoprotein formulated with a combination adjuvant induces protective immunity against both human respiratory syncytial virus and parainfluenza virus type 3[J]. Antiviral Res,2018,158:78-87.
[47]
Gomez M, Mufson MA, Dubovsky F, et al. Phase-Ⅰ study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children[J]. Pediatr Infect Dis J,2009,28(7):655-658.
[48]
Yang CF, Wang CK, Malkin E, et al. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine[J]. Vaccine,2013,31(26):2822-2827.
[1] 陈川, 杨太珠, 何泽凤. 肾脏彩色多普勒超声结果对儿童重症医学科急性肾损伤患儿的辅助诊断价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 219-226.
[2] 廖祥鹏, 安锐. 《2020新生儿复苏指南》和《新生儿复苏项目(8版)》的最新建议解读[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 527-535.
[3] 刘永, 杨恩明, 丁枭伟, 王天有. 国家儿童医学中心青年儿科医师培养机制研究[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 468-474.
[4] 杨敏, 乔莉娜, 李德渊, 刘忠强, 罗黎力. 儿童重症监护病房收治的脓毒症患儿血清乳酸脱氢酶水平对病情及预后的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(02): 209-217.
[5] 杨敏, 乔莉娜, 刘忠强, 李德渊, 罗黎力, 卢国艳, 王杨, 卿璐, 张海洋, 徐敏, 田大燕. 成年人无创性心功能血流图正常参考值在儿童运用的临床价值探讨[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(06): 708-714.
[6] 孟一星, 黄辉, 邓莉. 新型冠状病毒感染儿童皮肤损害[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(06): 374-378.
[7] 杨波, 苏敏, 任漪, 王惠颖, 高翔羽. 儿科消化系统腹泻病液体疗法教学方法的改进和思考[J]. 中华消化病与影像杂志(电子版), 2020, 10(04): 178-182.
[8] 丁倩, 王谦, 郭春彦, 张怡, 梁宇光. 基于SWOT分析法探讨儿科临床药师在药物临床研究中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 581-586.
[9] 吴珺, 王会娟, 张欣, 陈琳, 沙玉英, 田明达. 在非临床医学专业医学生中优化儿科教学模式的研究与探索[J]. 中华临床医师杂志(电子版), 2022, 16(10): 1024-1026.
[10] 梁宇光, 王谦, 丁倩, 郭春彦, 张怡, 王晓玲. 儿科特色研究型病房建设实践与思考[J]. 中华临床医师杂志(电子版), 2022, 16(04): 299-303.
[11] 晏政, 胡文娟, 张家玮, 姚弥, 齐建光. 新型冠状病毒肺炎疫情期间北京市某三甲医院儿科门诊和急诊就诊现况及启示[J]. 中华临床医师杂志(电子版), 2020, 14(07): 487-493.
[12] 隋文, 马瑞雪, 雷期音, 马婧, 高文丽, 蔡帼娴, 洪咏龙. 儿科医师对儿童口腔龋病知识了解程度的调查研究[J]. 中华临床医师杂志(电子版), 2020, 14(04): 255-260.
[13] 谭小云, 张靖, 刘珍银, 陈昆山, 夏杰军, 张明, 郭轶群, 陈穗颜. 盲法与超声引导下进行儿童股动脉穿刺的自身对照研究[J]. 中华介入放射学电子杂志, 2023, 11(01): 1-5,18.
[14] 刘婷, 郭磊, 张兆芳, 徐群, 赵肖群, 刘宝燕. DSA引导在儿科PICC困难置管中的应用体会[J]. 中华介入放射学电子杂志, 2021, 09(04): 447-451.
[15] 谭小云, 张靖, 陈昆山, 夏杰军, 陈程浩. 儿科介入进修医生的临床带教特点及思考[J]. 中华介入放射学电子杂志, 2020, 08(02): 180-183.
阅读次数
全文


摘要