切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 39 -46. doi: 10.3877/cma.j.issn.1674-1358.2022.01.006

论著

冠状动脉旁路移植术后手术部位感染风险预测模型及管理策略
陈华文1, 仇成华1,(), 李晓青1, 谢鹏1   
  1. 1. 224000 盐城市,南京医科大学附属盐城市第三人民医院手术室
  • 收稿日期:2021-04-30 出版日期:2022-02-15
  • 通信作者: 仇成华

Risk prediction model and management strategy for surgical site infection after coronary artery bypass grafting

Huawen Chen1, Chenghua Qiu1,(), Xiaoqing Li1, Peng Xie1   

  1. 1. Operating Room, Yancheng Third People’s Hospital Affiliated to Nanjing Medical University, Yancheng 224000, China
  • Received:2021-04-30 Published:2022-02-15
  • Corresponding author: Chenghua Qiu
引用本文:

陈华文, 仇成华, 李晓青, 谢鹏. 冠状动脉旁路移植术后手术部位感染风险预测模型及管理策略[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(01): 39-46.

Huawen Chen, Chenghua Qiu, Xiaoqing Li, Peng Xie. Risk prediction model and management strategy for surgical site infection after coronary artery bypass grafting[J/OL]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2022, 16(01): 39-46.

目的

探讨影响冠状动脉旁路移植术(CABG)后手术部位感染的主要危险因素,并构建定量列线图风险预测模型,提出针对性管理策略。

方法

回顾性总结2015年5月至2019年5月于南京医科大学附属盐城市第三人民医院接受CABG患者共302例作为模型组,比较感染与未感染者临床资料(主要包括性别、年龄、基础疾病史、体质指数、美国麻醉师协会(ASA)评分、常规皮肤准备、围术期抗菌药物不合理使用、手术时间> 4 h、手术室探视和连续使用同一手术室),再经多因素Logistic回归分析筛选主要危险因素并构建列线图风险预测模型。纳入2019年6月至2020年12月共211例CABG患者作为验证组,接受感染管理策略。采用受试者工作曲线(ROC)分析列线图模型评估模型组与验证组感染发生的效能。

结果

模型组共诊断11例患者发生感染(3.64%,11/302),单因素分析显示感染者年龄高于未感染者,且感染者基础疾病史(高血压和糖尿病)和肥胖者比例增高,ASA评分升高,常规皮肤准备方法、围术期抗菌药物不合理使用、手术时间> 4 h、手术室探视、连续使用同一手术室比例均较未感染者增高(P均< 0.05)。Logistic回归分析显示,高龄(OR = 1.58、95%CI:1.12~2.53、P = 0.011)、基础疾病史(OR = 2.63、95%CI:2.12~3.06、P = 0.001)、围术期抗菌药物不合理使用(OR = 2.01、95%CI:1.55~2.69、P = 0.002)、手术时间> 4 h(OR = 3.11、95%CI:2.68~3.59、P = 0.001)和手术室探视(OR = 1.24、95%CI:1.01~1.85、P = 0.024)均为CABG术后手术部位感染的主要危险因素。应用R软件根据主要危险因素(高龄、基础疾病、抗菌药物不合理使用、手术时间> 4 h、手术室探视)的权重(β值)进行定量赋值建立列线图模型。验证组共诊断感染者2例(0.95%,2/211),显著低于模型组(Fisher’s确切概率法,取单侧P = 0.047)。ROC分析显示,列线图模型预测模型组和验证组发生感染的准确性分别为0.895和0.864;Hosmer-Lemeshow检验显示拟合度良好。

结论

CABG术后手术部位感染的发生与多个临床因素有关,如高龄、基础疾病史、围术期抗菌药物不合理使用、手术时间> 4 h和手术室探视,医护人员应充分认知并采取严格的感染管理措施以减少感染的发生。

Objective

To investigate the main risk factors of surgical site infection after coronary artery bypass grafting (CABG), and to construct a quantitative nomogram risk prediction model, and put forward targeted management strategies.

Methods

Total of 302 patients with CABG admitted to Yancheng Third People’s Hospital Affiliated to Nanjing Medical University from May 2015 to may 2019 were retrospectively summarized as the model group. The clinical data of infection and non-infection patients were compared, including gender, age, basic disease history, body mass index, American Society of Anesthesiologists (ASA) score, routine skin preparation, unreasonable use of perioperative antibiotics, operation time > 4 h, operating room visit and continuous use of the same operating room, and the main risk factors were screened by multivariate Logistic regression analysis, and the risk prediction model of nomogram was established. A total of 211 patients with CABG from June 2019 to December 2020 were enrolled as the validation group and accepted the infection management strategy. Finally, receiver operating curve (ROC) was used to evaluate the efficacy of nomogram model for infection in model group and validation group.

Results

In model group, 11 patients with infection (3.64%, 11/302) were diagnosed. Univariate analysis showed that patients with infection were older, with higher proportions of basic disease history (hypertension and diabetes) and obesity, higher ASA score, higher rates of routine skin preparation, irrational use of antibiotics during perioperation, operation time > 4 h, operating room visitation and continuous use of the same operating room than non-infected patients, with significant differences (all P < 0.05). Logistic regression analysis showed that elder (OR = 1.58, 95%CI: 1.12-2.53, P = 0.011), basic disease history (OR = 2.63, 95%CI: 2.12-3.06, P = 0.001), unreasonable use of antibiotics during perioperation (OR = 2.01, 95%CI: 1.55-2.69, P = 0.002), operation time > 4 h (OR = 3.11, 95%CI: 2.68-3.59, P = 0.001) and operating room visitation (OR = 1.24, 95%CI: 1.01-1.85, P = 0.024) were the main risk factors of surgical site infection after CABG, all with significant differences. The nomogram model was established by R software according to Weight (β value) of the main risk factors (elder, basic diseases, unreasonable use of antibiotics, operation time > 4 h, operating room visitation). There were two patients with infection in validation group (0.95%, 2/211), which was significantly lower than that of model group (Fisher’s exact probability method, taking one side P = 0.047). ROC analysis showed that the accuracy of nomogram model in predicting infection in model group and validation group were 0.895 and 0.864, respectively. The Hosmer-Lemeshow test showed a good fit.

Conclusions

Surgical site infection after CABG is related to many clinical factors, such as elder, basic disease history, unreasonable use of antibiotics during perioperation, operation time > 4 h and operating room visitation. Medical staff should fully understand these risk factors and take strict infection management measures to reduce the occurrence of infection.

表1 影响模型组患者感染发生的单因素分析[例(%)]
表2 模型组患者发生感染主要危险因素的多因素Logistic回归分析
图1 模型组患者发生感染的列线图模型
图2 列线图模型预测患者发生感染的ROC曲线注:A:模型组,B:验证组
图3 两组患者列线图校准曲线注:A:模型组,B:验证组
[1]
Arsenault BJ, Puri R. Reducing exposure to cardiovascular risk factors: the legacy of prevention[J]. J Thorac Dis,2016,8(4):2340-2343.
[2]
樊国亮,张英飞,陈铁男, 等. 冠状动脉旁路移植术后肺部感染发生的危险因素分析[J]. 中国循环杂志,2019,34(2):139-143.
[3]
程丽峰,阿依古丽,李军, 等. 心脏外科患者手术部位感染的危险因素[J]. 中国感染控制杂志2017,16(1):62-65.
[4]
王登海. 四肢骨折手术后深部切口感染的影响因素[J/CD]. 中华实验和临床感染病杂志(电子版),2017,11(3):292-296.
[5]
Boisson M, Corbi P, Kerforne T, et al. Multicentre, open-label, randomised, controlled clinical trial comparing 2% chlorhexidine-70% isopropanol and 5% povidone iodine-69% ethanol for skin antisepsis in reducing surgical-site infection after cardiac surgery: the CLEAN 2 study protocol[J]. BMJ Open,2019,9(6):e026929.
[6]
韩冬,张超,杜守峰, 等. 冠状动脉旁路移植术后感染病原菌分布,耐药性及危险因素分析[J]. 新乡医学院学报,2020,37(8):773-776, 782.
[7]
中华人民共和国卫生部办公厅. 2001年医院感染诊断标准(试行)[EB/OL].

URL    
[8]
国家卫生计生委办公厅, 国家中医药管理局办公室, 解放军总后勤部卫生部药品器材局. 抗菌药物临床应用指导原则(2015年版)[EB/OL]. 国卫办医发[2015]43号.

URL    
[9]
方小萱,陈迁,方敏华, 等. 心脏外科术后切口感染危险因素识别及预测研究:基于多值Logistic模型和径向基神经网络算法[J]. 临床军医杂志,2016,44(11):1144-1149.
[10]
张玲,陈霞,王桂明. 颅脑手术患者手术部位感染危险因素分析[J/CD]. 中华实验和临床感染杂志(电子版),2017,11(1):32-35.
[11]
Andrade LS, Siliprandi EMO, Karsburg LL, et al. Surgical site infection prevention bundle in cardiac surgery[J]. Arq Bras Cardiol,2019,112(6):769-774.
[12]
Martin ET, Kaye KS, Knott C, et al. Diabetes and risk of surgical site infection: a systematic review and meta-analysis[J]. Infect Control Hosp Epidemiol,2016,37(1):88-99.
[13]
Vieira ALG, Stocco JGD, Ribeiro ACG, et al. Dressings used to prevent surgical site infection in the postoperative period of cardiac surgery: integrative review[J]. Rev Esc Enferm USP,2018,52(11):e03393.
[14]
Lemaignen A, Birgand G, Ghodhbane W, et al. Sternal wound infection after cardiac surgery: incidence and risk factors according to clinical presentation[J]. Clin Microbiol Infect,2015,21(7):674.e11-e18.
[15]
Cannon M, Hersey D, Harrison S, et al. Improving surveillance and prevention of surgical site infection in pediatric cardiac surgery[J]. Am J Crit Care,2016,25(2):e30-37.
[16]
Bustamante-Munguira J, Herrera-Gómez F, Ruiz-Álvarez M, et al. A new surgical site infection risk score: infection risk index in cardiac surgery[J]. J Clin Med,2019,8(4):480.
[17]
Vos RJ, Van Putte BP, Kloppenburg GTL. Prevention of deep sternal wound infection in cardiac surgery: a literature review[J]. J Hosp Infect,2018,100(4):411-420.
[18]
Jolivet S, Lescure FX, Armand-Lefevre L, et al. Surgical site infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae after cardiac surgery: incidence and risk factors[J]. Clin Microbiol Infect,2018,24(3):283-288.
[19]
Sommerstein R, Atkinson A, Kuster SP, et al. Antimicrobial prophylaxis and the prevention of surgical site infection in cardiac surgery: an analysis of 21 007 patients in Switzerland[J]. Eur J Cardiothorac Surg,2019,56(4):800-806.
[20]
Mufti HN, Jarad M, Haider MM, et al. Impact of pre-operative hemoglobin A1C level and microbiological pattern on surgical site infection after cardiac surgery[J]. Cureus,2020,12(12):e11851.
[21]
Cannon M, Hersey D, Harrison S, et al. Improving surveillance and prevention of surgical site infection in pediatric cardiac surgery[J]. Am J Crit Care,2016,25(2):e30-e37.
[22]
Leaper D, Wilson P, Assadian O, et al. The role of antimicrobial sutures in preventing surgical site infection[J]. Ann R Coll Surg Engl,2017,99(6):439-443.
[23]
Roth JA, Juchler F, Dangel M, et al. Frequent door openings during cardiac surgery are associated with increased risk for surgical site infection: a prospective observational study[J]. Clin Infect Dis,2019,69(2):290-294.
[24]
Figuerola-Tejerina A, Rodríguez-Caravaca G, Bustamante-Munguira J, et al. Epidemiological surveillance of surgical site infection and its risk factors in cardiac surgery: a prospective cohort study[J]. Rev Esp Cardiol (Engl Ed),2016,69(9):842-848.
[25]
Magboo R, Drey N, Cooper J, et al. Predicting cardiac surgical site infection: development and validation of the barts surgical infection risk tool[J]. J Clin Epidemiol,2020,128(12):57-65.
[1] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[4] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[7] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[8] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[9] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[10] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[11] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[12] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
[13] 李文哲, 王毅, 崔建, 郑启航, 王靖彦, 于湘友. 新疆维吾尔自治区重症患者急性肾功能异常的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 269-276.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?