切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 67 -71. doi: 10.3877/cma.j.issn.1674-1358.2021.01.011

所属专题: 文献

论著

鲍曼不动杆菌生物被膜形成能力与被膜相关基因及耐药性的关系
罗凤华1, 魏剑林2,()   
  1. 1. 637000 南充市,南充市中心医院嘉陵院区(南充市嘉陵区人民医院)检验科
    2. 637000 南充市,南充市中心医院检验科
  • 收稿日期:2020-02-19 出版日期:2021-02-15
  • 通信作者: 魏剑林

Relationship between the biofilm formation ability of Acinetobacter baumannii and biofilm related genes, drug resistance

Fenghua Luo1, Jianlin Wei2,()   

  1. 1. Department of Clinical Laboratory, Nanchong Central Hospital Jialing Branch, Nanchong Jialing People’s Hospital, Nanchong 637000, China
    2. Department of Clinical Laboratory, Nanchong Central Hospital, Nanchong 637000, China
  • Received:2020-02-19 Published:2021-02-15
  • Corresponding author: Jianlin Wei
引用本文:

罗凤华, 魏剑林. 鲍曼不动杆菌生物被膜形成能力与被膜相关基因及耐药性的关系[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 67-71.

Fenghua Luo, Jianlin Wei. Relationship between the biofilm formation ability of Acinetobacter baumannii and biofilm related genes, drug resistance[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2021, 15(01): 67-71.

目的

探讨临床分离的鲍曼不动杆菌生物被膜形成能力与相关基因及耐药性的关系。

方法

收集南充市中心医院嘉陵院区2018年1月至6月的临床分离鲍曼不动杆菌共40株,采用Vitek-2全自动微生物分析系统测定临床菌株对13种常用抗菌药物的最低抑菌浓度(MIC);采用结晶紫染色法测定临床菌株生物被膜形成能力;采用PCR法检测生物被膜相关基因abaI、bap、BLP1与BLP2。采用Fisher确切概率法分析不同生物被膜形成能力菌株的耐药情况及基因检出率。

结果

40株临床菌株中多重耐药(MDR)菌株7株(17.5%),泛耐药(XDR)菌株14株(35.0%)。共31株(77.5%)临床菌株形成生物被膜。abaI、bap、BLP1与BLP2基因的检出率分别为85.00%、62.50%、5.0%和17.5%。不同生物被膜形成能力的鲍曼不动杆菌对哌拉西林/他唑巴坦的耐药率差异有统计学意义(P = 0.046)。而生物被膜形成强阳性鲍曼不动杆菌对哌拉西林、头孢他啶、头孢哌酮、头孢哌酮/舒巴坦、亚胺培南、美罗培南、阿米卡星、左氧氟沙星、多西环素、复方磺胺甲恶唑的耐药率均低于弱阳性和阴性菌株,但差异均无统计学意义(P均> 0.05)。携带BLP2基因菌株的生物被膜形成能力差异有统计学意义(P = 0.039),而携带abaI(P = 0.455)、bap(P = 0.058)和BLP1基因(P = 1.000)菌株的生物被膜形成能力差异无统计学意义。

结论

生物被膜可导致鲍曼不动杆菌对抗菌药物的敏感性改变,生物被膜形成能力仅与携带BLP2基因及哌拉西林/他唑巴坦耐药有关。

Objective

To investigate the relationship between biofilm formation ability of Acinetobacter baumannii (A. baumannii) clinical isolated and biofilm related genes, drug resistance.

Methods

Total of 40 strains of A. baumannii clinical isolates were collected from Nanchong Jialing District People’s Hospital from January to June, 2018. The minimum inhibitory concentration (MIC) of 13 kinds of common antibiotics were determined by Vitek-2 Automatic Microorganism System. The biofilm formation ability was determined by crystal violet staining. The biofilm related genes abaI, bap, BLP1 and BLP2 were detected by PCR. The biofilm related genes and drug resistance of different biofilm formation ability were analyzed by Fisher exact probability method.

Results

Seven (17.5%) multi-drug resistant (MDR) strains and 14 (35.0%) extensively drug resistant (XDR) strains were detected among the 40 clinical isolates. Total of 31 (77.5%) strains exhibitted biofilm formation. The positive ratios of abaI, bap, BLP1 and BLP2 gene were 85.00%, 62.50%, 5% and 17.5%, respectively. The resistance of A. baumannii with different biofilm formation ability to piperacillin/tazobactam was significantly different (P = 0.046). The resistance rates of A. baumannii strains with strong biofilm formation to piperacillin, ceftazidime, cefoperazone, cefoperazone/sulbactam, imipenem, meropenem, amikacin, levofloxacin, doxycline, compound sulfamethoxazole were lower than those of weak positive strains and negative strains, but with no significant differences (all P > 0.05) The biofilm formation ability of isolates with BLP2 gene were statistically different (P = 0.039), but the biofilm formation ability were not significantly different of iaolates with abaI (P = 0.455), bap (P = 0.058) and BLP1 genes (P = 1.000), respectively.

Conclusions

The sensitivity of A. baumannii to antibiotics could be changed by biofilm formation, which was related to biofilm formation and BLP2 gene, piperacillin/tazobactam resistance.

表1 引物序列表
表2 不同生物被膜形成能力的鲍曼不动杆菌对常见抗菌药物的耐药率[例(%)]
表3 不同生物被膜形成能力的相关基因检出率[例(%)]
[1]
黄远祥. 鲍曼不动杆菌生物膜耐药机制及研究进展[J]. 临床合理用药杂志,2016,9(6):173-175.
[2]
殷网虎,曹美林,邓慧, 等. 鲍曼不动杆菌生物膜形成与耐药关系研究[J]. 江西医药,2016,51(3):275-277.
[3]
刘鑫喆,滑明溪,王慧珠, 等. 基于全基因组序列的耐碳青霉烯鲍曼不动杆菌的耐药与毒力研究[J/CD]. 中华实验和临床感染病杂志(电子版),2020,14(5):367-373.
[4]
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments[J]. Infect Drug Resist,2018,11:2277-2299.
[5]
Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen[J]. Pathog Dis,2014,71(3):292-301.
[6]
邹明明,王文骏,马晓彬, 等. 细菌生物被膜的研究进展[J]. 中国食品学报,2017,17(7):156-164.
[7]
Sanchez CJ, Mende K, Beckius ML, et al. Biofilm formation by clinical isolates and the implications in chronic infections[J]. BMC Infect Dis,2013,13:47.
[8]
江培涛,方敏,刘棵文, 等. 生物膜抑制剂对泛耐药鲍曼不动杆菌碳青霉烯类耐药性的影响[J]. 中国抗生素杂志,2018,43(10):1291-1295.
[9]
Liu H, Wu YQ, Chen LP, et al. Biofilm-related genes: analyses in multi-antibiotic resistant Acinetobacter baumannii isolates from mainland China[J]. Med Sci Monit,2016,22:1801-1807.
[10]
De Gregorio E, Del Franco M, Martinucci M, et al. Biofilm-associated proteins: news from Acinetobacter [J]. BMC Genomics,2015,16:933.
[11]
Fallah A, Rezaee MA, Hasani A, et al. Frequency of bap and cpaA virulence genes in drug resistant clinical isolates of Acinetobacter baumannii and their role in biofilm formation[J]. Iran J Basic Med Sci,2017,20(8):849-885.
[12]
张达容,陈远翔. 生物被膜阳性鲍曼不动杆菌分布及耐药性分析[J]. 国际检验医学杂志,2013,34(7):801-802, 804.
[13]
赖其伟,黄丽芳. 鲍曼不动杆菌生物被膜与耐药性的相关性分析[J]. 国际检验医学杂志,2016,37(2):153-154.
[14]
Espinal P, Marti S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces[J]. J Hosp Infect,2012,80(1):56-60.
[15]
黄冬梅,李福祥. 鲍曼不动杆菌耐药与生物膜形成关系的研究进展[J/CD]. 中华肺部疾病杂志(电子版),2017,10(2):223-225.
[16]
王政,刘丁,黄冬梅, 等. 鲍曼不动杆菌临床分离株生物被膜形成能力与耐药性的研究[J]. 中国病原生物学杂志,2010,5(6):405-407, 396.
[17]
Singh S, Singh SK, Chowdhury I, et al. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents[J]. Open Microbiol J,2017,11:53-62.
[18]
Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation[J]. J Antimicrob Chemother,2018,73(8):2003-2020.
[19]
Wolcott R, Dowd S. The role of biofilms: are we hitting the right target?[J]. Plast Reconstr Surg,2011,127(Suppl 1): S28-S35.
[20]
胡付品,郭燕,朱德妹, 等. 2017年CHINET中国细菌耐药性监测[J]. 中国感染与化疗杂志,2018,18(3):241-251.
[21]
张旭燕,马德贵,张世达, 等. 鲍曼不动杆菌生物被膜形成能力与基因型关系的研究[J]. 北京医学,2011,33(9):728-730.
[22]
皇甫昱婵,刁文晶,俞静, 等. 鲍曼不动杆菌生物被膜形成能力的研究[J]. 诊断学理论与实践,2019,18(5):532-537.
[23]
刘原,柯蕊,杨妮, 等. 呼吸道分离鲍曼不动杆菌生物被膜形成能力与耐药性关系的研究[J]. 中国实验诊断学,2015,19(8):1243-1246.
[24]
黎皓思,潘频华. 鲍曼不动杆菌黏附相关机制研究进展[J]. 中国感染与化疗杂志,2015,15(5):496-500.
[25]
杨长亮,黄前川. 鲍曼不动杆菌生物膜形成的调节[J]. 中国感染控制杂志,2012,11(3):228-230, 235.
[1] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[4] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[5] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[6] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[7] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[8] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[9] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[10] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[11] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[12] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[13] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[14] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[15] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
阅读次数
全文


摘要