切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (06) : 577 -584. doi: 10.3877/cma.j.issn.1674-1358.2018.06.011

所属专题: 文献

论著

慢性丙型肝炎合并脂肪肝患者Sirt1和固醇调节元件结合蛋白表达及意义
董金玲1, 谢志宏1, 何杰1, 张颖1,()   
  1. 1. 313000 湖州市,浙江省湖州市第一人民医院感染科
  • 收稿日期:2018-04-01 出版日期:2018-12-15
  • 通信作者: 张颖
  • 基金资助:
    浙江省医药卫生科技计划项目(No. 2015KYB382)

Expression and clinical significance of Sirt1 and sterol-regulatory element binding proteins in hepatitis C virus infected patients with fatty liver

Jinling Dong1, Zhihong Xie1, Jie He1, Ying Zhang1,()   

  1. 1. Department of Infectious Diseases, The First People’s Hospital Affiliated to Huzhou Normal Collage, Huzhou 313000, China
  • Received:2018-04-01 Published:2018-12-15
  • Corresponding author: Ying Zhang
  • About author:
    Corresponding author: Zhang Ying, Email:
引用本文:

董金玲, 谢志宏, 何杰, 张颖. 慢性丙型肝炎合并脂肪肝患者Sirt1和固醇调节元件结合蛋白表达及意义[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(06): 577-584.

Jinling Dong, Zhihong Xie, Jie He, Ying Zhang. Expression and clinical significance of Sirt1 and sterol-regulatory element binding proteins in hepatitis C virus infected patients with fatty liver[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2018, 12(06): 577-584.

目的

探讨丙型肝炎病毒(HCV)感染合并不同程度的肝脏脂肪变患者Sirt1和SREBP表达及其临床意义。

方法

收集2015年7月至2017年6月于湖州市第一人民医院肝病科就诊患者共140例,其中80例丙型肝炎患者(包括20例无脂肪肝的单纯丙型肝炎患者,20例丙型肝炎合并轻度脂肪肝患者,20例丙型肝炎合并中度脂肪肝患者及20例丙型肝炎合并重度脂肪肝患者);60例单纯脂肪肝患者(包括20例单纯轻度脂肪肝患者,20例单纯中度脂肪肝患者,20例单纯重度脂肪肝患者)。选择20例健康查体者为正常对照组。分别检测入组患者性别、年龄及HCV RNA水平(入组丙型肝炎患者抗体均为阳性),收集患者外周血样本,通过real-time PCR及Western blot检测Sirt1和SREBP表达水平。

结果

与单纯丙型肝炎患者相比,丙型肝炎合并轻度脂肪肝患者Sirt1水平差异无统计学意义(t = 0.344、P = 0.732),丙型肝炎合并中度、重度脂肪肝患者Sirt1水平下降:mRNA水平分别下调0.724倍(t = 4.265、P < 0.001)和0.540倍(t = 2.489、P = 0.013);蛋白水平分别下调0.69倍(t = 4.857、P < 0.001)和0.51倍(t = 10.523、P = 0.002),差异均有统计学意义。与单纯丙型肝炎患者相比,丙型肝炎合并轻度、中度、重度脂肪肝患者SREBP-1c水平上升:mRNA水平分别上调1.132倍(t =-3.924、P < 0.001)、1.424倍(t =-4.300、P < 0.001)和1.663倍(t =-3.758、P = 0.001);蛋白水平分别上调1.49倍(t = -9.323、P < 0.001)、1.65倍(t =-14.992、P < 0.001)和1.79倍(t =-15.847、P < 0.001),差异均有统计学意义。单纯丙型肝炎患者、丙型肝炎合并轻度、中度、重度脂肪肝患者间SREBP-2表达差异无统计学意义(P > 0.05)。与单纯轻度脂肪肝患者比较,丙型肝炎合并轻度脂肪肝患者Sirt1表达水平差异无统计学意义(t = 0.344、P = 0.732)。与单纯中、重度脂肪肝患者相比,丙型肝炎合并中、重度脂肪肝患者Sirt1表达水平显著下降:mRNA水平分别下调0.682倍(t = 2.987、P = 0.010)和0.521倍(t = 5.366、P < 0.001);蛋白水平分别下调0.800倍(t = 2.801、P = 0.016)和0.635倍(t = 7.891、P < 0.001),差异均有统计学意义。与单纯轻度、中度、重度脂肪肝患者相比,丙型肝炎合并轻度、中度、重度脂肪肝患者SREBP-1c表达水平显著升高:mRNA水平分别上调1.428倍(t =-15.943、P < 0.001)、1.592倍(t =-9.135、P = 0.004)和1.521倍(t =-9.138、P < 0.001);蛋白水平分别上调1.622倍(t = -7.960、P = 0.010)、1.749倍(t = -2.196、P = 0.012)和1.803倍(t =-8.942、P = 0.045),差异均有统计学意义。

结论

丙型肝炎病毒感染可通过抑制Sirt1及上调SREBP-1c表达而影响肝脏脂肪变。

Objective

To investigate the expression and clinical significance of Sirt1 and sterol-regulatory element binding proteins (SREBP) in hepatitis C patients with different degrees of fatty liver.

Methods

From July 2015 to June 2017, a total of 140 patients with hepatitis C were enrolled in the Department of Hepatology, the First People’s Hospital of Huzhou City, including 80 patients with hepatitis C (20 patients with simple hepatitis C without fatty liver, 20 patients with HCV infected and mild fatty liver, 20 patients with HCV infected and moderate fatty liver and 20 patients with HCV infected and severe fatty liver). There were 60 cases of fatty liver without HCV infection (20 cases of mild fatty liver, 20 cases of moderate fatty liver and 20 cases of severe fatty liver). While 20 healthy people were selected as the normal control group. The sex, age and HCV RNA load (All the patients with hepatitis C were with positive anti-HCV) of the patients were detected, respectively. The peripheral blood samples were collected and the expression of Sirt1 and SREBP were detected by real-time PCR and Western blot.

Results

The levels of Sirt1 in patients with moderate and severe fatty liver were significantly lower than those in patients with hepatitis C: the levels of mRNA decreased by 0.724 times (t = 4.265, P < 0.001) and 0.540 times (t = 2.489, P = 0.013), respectively. The protein levels decreased by 0.69 times (t = 4.857, P < 0.001) and 0.51 times (t = 10.523, P = 0.002), respectively. There was no significant differences of Sirt1 expression between patients with mild fatty liver and HCV infected patients without mild fatty liver (t = 0.344、P = 0.732). The levels of SREBP-1c in HCV infected patients with mild, moderate and severe liver steatosis were higher than those in HCV infected patients without liver steatosis: the level of mRNA increased by 1.132 times (t = -3.924, P < 0.001), 1.424 times (t =-4.300, P < 0.001), and 1.663 times (t =-3.758, P = 0.001), respectively. Protein levels increased by 1.49 times (t =-9.323, P < 0.001) and 1.65 times (t =-14.992, P < 0.001) and 1.79 times (t =-15.847, P < 0.001), respectively, with significant differences. There was no significant difference in SREBP-2 expression among HCV infected patients with mild, moderate and severe liver steatosis and HCV infected patients without liver steatosis (all P > 0.05). In moderate and severe liver steatosis patients, compared with those without HCV infection, the expression of Sirt1 in patients with HCV infection decreased significantly: the level of mRNA decreased by 0.682 times (t = 2.987, P = 0.010) and 0.521 times (t = 5.366, P < 0.001), respectively. The protein levels decreased by 0.800 times (t = 2.801, P = 0.016) and 0.635 times (t = 7.891, P < 0.001), respectively, with significant differences. There was no significant difference of Sirt1 expression between mild fatty liver patients with HCV infection and those without HCV infection (t = 0.344, P = 0.732). In patients with mild, moderate and severe fatty liver, the expression of SREBP-1c in patients with HCV infection was significantly higher than that in patients without HCV infection. The level of mRNA increased by 1.428 times (t =-15.943, P < 0.001), 1.592 times (t =-9.135, P = 0.004) and 1.521 times (t =-9.138, P < 0.001), respectively. Protein levels increased by 1.622 times (t =-7.960, P = 0.010, 1.749 times (t =-2.196, P = 0.012) and 1.803 times (t =-8.942, P = 0.045), respectively, all with significant differences.

Conclusion

Hepatitis C virus infection could affect fatty liver by inhibiting Sirt1 expression and upregulating SREBP-1c expression.

表1 qRT-PCR引物序列
表2 入组健康体检者和肝病患者的一般资料
表3 健康体检者、单纯丙型肝炎、丙型肝炎合并不同程度脂肪肝患者Sirt1和SREBP mRNA水平
表4 健康体检者、单纯丙型肝炎、丙型肝炎合并不同程度脂肪肝患者Sirt1和SREBP表达
图1 丙型肝炎合并不同程度脂肪肝患者与单纯丙型肝炎患者Sirt1、SREBP-1c及SREBP-2蛋白表达
表5 Sirt1及SREBP-1c在单纯脂肪肝及丙型肝炎合并脂肪肝患者中mRNA水平
表6 Sirt1及SREBP-1c在单纯脂肪肝及丙型肝炎合并脂肪肝患者中蛋白表达
图2 Sirt1及SREBP-1c在单纯脂肪肝及丙型肝炎合并脂肪肝患者中蛋白表达水平
[1]
World Health Organization. Hepatitis C global surveillance update[J]. Wkly Epidemiol Rec,2000,75(1):17-28.
[2]
Friedman SL. Liver fibrosis-from bench to bedside[J]. J Hepatol,2003,38(Suppl 1):S38-S53.
[3]
Hwang SJ. Hepatitis C virus infection: an overview[J]. J Microbiol Immunol Infect,2001,34(4):227-234.
[4]
Hiramitsu M, Shimada Y, Kuroyanagi J, et al. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis[J]. Sci Rep,2014,4:3708.
[5]
Khan M, Jahan S, Khaliq S, et al. Interaction of the hepatitis C virus (HCV) core with cellular genes in the development of HCV-induced steatosis[J]. Arch Virol,2010,155(11):1735-1753.
[6]
Higashida K, Kim SH, Jung SR, et al. Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: a reevaluation[J]. PLoS Biol,2013,11(1):e1001603.
[7]
Rickenbacher A, Jang JH, Limani P, et al. Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice[J]. J Hepatol,2014,61(2):301-308.
[8]
Picand F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPARγ[J]. Nature,2004,429(6993):771-776.
[9]
Kerstten S, Desvergne B, Wahli W. Roles of PPARs in health and disease[J]. Nature,2000,405(6785):421-424.
[10]
中华医学会肝脏病学会分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 中华内科杂志,2010,49(3):275-278.
[11]
Scheuer PJ, Ashrafzadeh P, Sherlock S, et al. The pathology of hepatitis C[J]. Hepatology,2010,15(4):567-571.
[12]
Moriya K, Shintani Y, Fujie H, et al. Serum lipid profile of patients with genotype 1b hepatitis C viral infection in Japan[J]. Hepatol Res,2003,25(4):369-374.
[13]
Naeem M, Bacon BR, Mistry B, et al. Changes in serum lipoprotein profile during interferon therapy in chronic hepatitis C[J]. Am J Gastroenterol,2001,96(8):2468-2472.
[14]
Wang L, Jia XJ, Jiang HJ, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition[J]. Mol Cell Biol,2013,33(10):1956-1964.
[15]
Yang M, Liu W, Pellicane C, et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake[J]. Lipid Res,2014,55(2):226-238.
[16]
中华中医药学会脾胃病分会. 非酒精性脂肪性肝病中医诊疗专家共识意见(2017)[J]. 临床肝胆病杂志,2017,33(12):2270-2274.
[17]
Woodhouse SD, Narayan R, Latham S, et al. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro[J]. Hepatology,2010,52(2):443-453.
[18]
Lonardo A, Adinoli LE, Loria P, et al. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease[J]. Gastroenterology,2004,126(1):586-597.
[19]
Fujino T, Nakamuta M, Yada R, et al. Expression of lipid metabolism-associated genes in hepatitis C virus-infected human liver[J]. Hepatol Res,2010,40(3):923-929.
[20]
Kohjima M, Higuchi N, Kato M, et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease[J]. Int J Mol Med,2008,21(4):507-511.
[21]
Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Invest,2002,109:1125-1131.
[22]
Sandip KB, Hangeun K, Keith M, et al. Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus[J]. J Virol,2014,88(8):4195-4203.
[23]
Li M, Wang Q, Liu SA, et al. MicroRNA-185-5p mediates regulation of SREBP2 expression by hepatitis C virus core protein[J]. World J Gastroenterol,2015,21(15):4517-4525.
[24]
Moore KJ, Rayner KJ, Suárez Y, et al. microRNAs and cholesterol metabolism[J]. Trends Endocrinol Metab,2010,21(12):699-706.
[25]
Kerstten S, Desvergne B, Wahli W. Roles of PPARs in health and disease[J]. Nature,2000,405(6785):421-424.
[26]
Li ZQ, Gu XY, Hu JX, et al. Hepatitis C virus core protein impairs metabolic disorder of liver cell via HOTAIR-Sirt1 signaling[J]. Biosci Rep,2016,36(3):e00336.
[1] 任新平, 林艳艳, 郑丽丽, 詹维伟. 超声造影在脂肪肝背景下肝局灶性病变诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2020, 17(09): 834-840.
[2] 谢晓宁, 王晓萍, 邵萍. 老年2型糖尿病患者非酒精性脂肪肝患病率及危险因素分析[J]. 中华危重症医学杂志(电子版), 2022, 15(04): 308-311.
[3] 杨豪俊, 焦宇文, 刘寒旸, 林煌, 钱峻. 腹腔镜袖状胃切除结合十二指肠空肠吻合术治疗肥胖并非酒精性脂肪性肝病的可行性及安全性分析[J]. 中华普外科手术学杂志(电子版), 2020, 14(05): 472-475.
[4] 张晋平, 朱志军, 孙丽莹, 魏林, 曲伟, 曾志贵, 张海明. 活体肝移植供肝脂肪变性评估研究进展[J]. 中华移植杂志(电子版), 2022, 16(04): 249-255.
[5] 杨皖东, 肖春华, 普慧敏, 李永峰, 李鸿, 杨薇, 沈燕, 丁世兰. 剪切波弹性成像在供肝评估中的临床应用[J]. 中华移植杂志(电子版), 2020, 14(04): 220-224.
[6] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[7] 李运林, 娄冬华. 滨海县非酒精性脂肪肝发病与消退的影响因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 354-358.
[8] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[9] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
[10] 马文文, 呼敏, 王贵红, 高健. miR-103a-2、miR-122和vaspin在非酒精性脂肪性肝病合并HBV感染中的表达及意义[J]. 中华临床医师杂志(电子版), 2022, 16(02): 170-174.
[11] 林海燕, 程宁, 黄鑫, 刘威, 王园园. 自拟疏肝健脾方对肝郁脾虚型非酒精性单纯性脂肪肝患者短链脂肪酸的影响[J]. 中华临床医师杂志(电子版), 2021, 15(11): 871-876.
[12] 梁文迪, 苏钰琦, 胡彪, 甘胤文, 黄卫超, 杨其霖. 高密度脂蛋白胆固醇和非酒精性脂肪肝发生的相关性——基于日本人群的一项横断面研究[J]. 中华临床实验室管理电子杂志, 2021, 09(03): 154-159.
[13] 何亚伟, 陈皖京, 宋佳宏, 于刚, 贾犇黎, 汪泳. 肥胖患者SCH、血清维生素D水平与NAFLD严重程度关系的研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 95-101.
[14] 陈伟, 罗衡桂, 赵象文, 毛岳峰, 唐彬, 李绍杰, 张晓玲, 陈香林, 王力. 腹腔镜袖状胃切除术对重度肥胖患者非酒精性脂肪肝病及糖脂代谢的短期影响[J]. 中华肥胖与代谢病电子杂志, 2020, 06(03): 153-158.
[15] 徐文静, 杨鸣宇, 何航宇. 肥胖冠心病患者非酒精性脂肪肝与Gensini评分之间的关系[J]. 中华肥胖与代谢病电子杂志, 2020, 06(01): 47-50.
阅读次数
全文


摘要