[10] |
Wu Y, Lan C, Ren D, et al. Induction of siglec-1 by endotoxin tolerance suppresses the innate immune response by promoting TGF-β1 production[J]. J Biol Chem,2016,291(23):12370-12382.
|
[11] |
Sewald X, Ladinsky MS, Uchil PD, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection[J]. Science,2015,350(6260):563-567.
|
[12] |
Walker JA, Smith KG. CD22: an inhibitory enigma[J]. Immunology, 2008,123(3):314-325.
|
[13] |
Gjertsson I, Nitschke L, Tarkowski A. The role of B cell CD22 expression in Staphylococcus aureus arthritis and sepsis[J]. Microbes Infect,2004,6(4):377-382.
|
[14] |
Jiang YN, Cai X, Zhou HM, et al. Diagnostic and prognostic roles of soluble CD22 in patients with Gram-negative bacterial sepsis[J]. Hepatobiliary Pancreat Dis Int,2015,14(5):523-529.
|
[15] |
Jiang Y, Zhou H, Ma D, et al. MicroRNA-19a and CD22 comprise a feedback loop for B cell response in sepsis[J]. Med Sci Monit,2015,21:1548-1555.
|
[16] |
Ma DY, Suthar MS, Kasahara S, et al. CD22 is required for protection against West Nile virus Infection[J]. J Virol,2013,87(6):3361-3375.
|
[17] |
Nitschke L. Suppressing the antibody response with Siglec ligands[J]. N Engl J Med,2013,369(14):1373-1374.
|
[18] |
Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. PhaseⅠtrial of recombinant immunotoxin RFB4 (dsFv)-PE38 (BL22) in patients with B-cell malignancies[J]. J Clin Oncol,2005,23(27):6719-6729.
|
[19] |
Shao JY, Yin WW, Zhang QF, et al. Siglec-7 defines a highly functional natural killer cell subset and inhibits cell-mediated activities[J]. Scand J Immunol,2016,84(3):182-190.
|
[20] |
Mizrahi S, Gibbs BF, Karra L, et al. Siglec-7 is an inhibitory receptor on human mast cells and basophils[J]. J Allergy Clin Immunol,2014,134(1):230-233.
|
[21] |
Nguyen KA, Hamzeh-Cognasse H, Palle S, et al. Role of Siglec-7 in apoptosis in human platelets[J]. PLoS One,2014,9(9):e106239.
|
[22] |
Grutkoski PS, Chen Y, Chung CS, et al. Sepsis-induced SOCS-3 expression is immunologically restricted to phagocytes[J]. J Leukoc Biol,2003,74(5):916-922.
|
[23] |
Orr SJ, Morgan NM, Buick RJ, et al. SOCS3 targets Siglec 7 for proteasomal degradation and blocks Siglec 7-mediated responses[J]. J Biol Chem,2007,282(6):3418-3422.
|
[24] |
Varchetta S, Brunetta E, Roberto A, et al. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes[J]. PLoS One,2012,7(9):e45821.
|
[25] |
Siddiqui S, Schwarz F, Springer S, et al. Studies on the detection, expression, glycosylation, dimerization, and ligand binding properties of mouse Siglec-E[J]. J Biol Chem,2017,292(3):1029-1037.
|
[26] |
Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases[J]. Int J Biol Sci,2014,10(5):520-529.
|
[27] |
Liu YC, Yao FH, Chai YF, et al. Xuebijing injection promotes M2 polarization of macrophages and improves survival rate in septic mice[J]. Evid Based Complement Alternat Med,2015,2015:352642.
|
[28] |
Higuchi H, Shoji T, Murase Y, et al. Siglec-9 modulated IL-4 responses in the macrophage cell line RAW264[J]. Biosci Biotechnol Biochem,2016,80(3):501-509.
|
[29] |
Higuchi H, Shoji T, Iijima S, et al. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages[J]. Biosci Biotechnol Biochem,2016,80(6):1141-1148.
|
[30] |
Chen GY, Brown NK, Wu W, et al. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1[J]. Elife,2014,3:e04066.
|
[31] |
Boyd CR, Orr SJ, Spence S, et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production[J]. J Immunol, 2009,183(12):7703-7709.
|
[32] |
Wu Y, Ren D, Chen GY. Siglec-E negatively regulates the activation of TLR4 by controlling its endocytosis[J]. J Immunol,2016,197(8): 3336-3347.
|
[33] |
McMillan SJ, Sharma RS, Richards HE, et al. Siglec-E promotesβ2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung[J]. J Biol Chem,2014,289(29):20370-20376.
|
[34] |
Aalto K, Autio A, Kiss EA, et al. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer[J]. Blood,2011,118(13):3725-3733.
|
[35] |
Spence S, Greene MK, Fay F, et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation[J]. Sci Transl Med,2015,7(303):303ra140.
|
[36] |
Chu S, Zhu X, You N, et al. The Fab fragment of a human anti-Siglec-9 monoclonal antibody suppresses LPS-induced inflammatory responses in human macrophages[J]. Front Immunol,2016,7:649-661.
|
[37] |
Chen GY, Brown NK, Zheng P, et al. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity[J]. Glycobiology, 2014,24(9):800-806.
|
[38] |
Stephenson HN, Mills DC, Jones H, et al. Pseudaminic acid onCampylobacter jejuniflagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction[J]. J Infect Dis,2014,210(9):1487-1498.
|
[39] |
Chen W, Han C, Xie B, et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation[J]. Cell,2013,152(3):467-478.
|
[1] |
Schauer R. Sialic acids as regulators of molecular and cellular interactions[J]. Curr Opin Struct Biol,2009,19(5):507-514.
|
[2] |
Macauley MS, Crocker PR, Paulson JC.Siglec-mediated regulation of immune cell function in disease[J]. Nat Rev Immunol,2014,14(10):653-666.
|
[3] |
Cao H, de Bono B, Belov K, et al. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region[J]. Immunogenetics,2009,61(5):401-417.
|
[40] |
Parlato M, Souza-Fonseca-Guimaraes F, Philippart F, et al. CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis[J]. J Immunol,2014,192(5):2449-2459.
|
[41] |
Chen GY, Tang J, Zheng P, et al. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses[J].Science, 2009,323(5922):1722-1725.
|
[42] |
Chen GY, Chen X, King S, et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-Siglec-G interaction[J]. Nat Biotechnol,2011,29(5):428-435.
|
[43] |
Paulson JC, Kawasaki N. Sialidase inhibitors DAMPen sepsis[J]. Nat Biotechnol,2011,29(5):406-407.
|
[44] |
Ding Y, Guo Z, Liu Y, et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC classⅠ-peptide complex formation[J]. Nat Immunol,2016,17(10):1167-1175.
|
[45] |
Bandala-Sanchez E, Zhang Y, Reinwald S, et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10[J]. Nat Immunol,2013,14(7):741-748.
|
[46] |
Nitschke L. Siglec-G is a B-1 cell inhibitory receptor and also controls B cell tolerance[J]. Ann N Y Acad Sci,2015,1362:117-121.
|
[47] |
Jellusova J, Düber S, Gückel E, et al. Siglec-G regulates B1 cell survival and selection[J]. J Immunol,2010,185(6):3277-3284.
|
[48] |
Carlin AF, Chang YC, Areschoug T, et al. Group BStreptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5[J]. J Exp Med,2009,206(8):1691-1699.
|
[49] |
Ali SR, Fong JJ, Carlin AF, et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group BStreptococcus[J]. J Exp Med,2014,211(6):1231-1242.
|
[50] |
Angata T, Ishii T, Motegi T, et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation[J]. Cell Mol Life Sci,2013,70(17):3199-3210.
|
[51] |
Wielgat P, Mroz RM, Stasiak-Barmuta A, et al. Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients[J].Adv Exp Med Biol,2015,839:1-5.
|
[4] |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016[J]. Crit Care Med,2017,45(3):486-552.
|
[5] |
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA,2011,306(23):2594-2605.
|
[6] |
Izquierdo-Useros N, Lorizate M, Contreras FX, et al. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1[J]. PLoS Biol,2012,10(4):e1001315.
|
[7] |
Gummuluru S, Pina RNG, Akiyama H. CD169-dependent cell-associated HIV-1 transmission: a driver of virus dissemination[J]. J Infect Dis,2014,210 (Suppl 3):S641-S647.
|
[8] |
Gupta P, Lai SM, Sheng J, et al. Tissue-resident CD169(+) macrophages form a crucial front line against plasmodium Infection[J]. Cell Rep,2016,16(6):1749-1761.
|
[9] |
Shaabani N, Duhan V, Khairnar V, et al. CD169+macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection[J]. Cell Death Dis,2016,7(11):e2446.
|