切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 417 -421. doi: 10.3877/cma.j.issn.1674-1358.2018.05.001

所属专题: 文献

综述

Siglecs家族在脓毒症中的研究进展
褚萨萨1, 尤娜2, 汪茂荣1,()   
  1. 1. 210000 南京市,南京中医药大学附属八一医院感染科
    2. 236800 亳州市,亳州市人民医院感染科
  • 收稿日期:2018-01-30 出版日期:2018-10-15
  • 通信作者: 汪茂荣
  • 基金资助:
    军队特需药品保密专项"十二五"计划(No. 2013ZX09J13110-05B)

Progress on Siglecs in sepsis

Sasa Chu1, Na You2, Maorong Wang1,()   

  1. 1. Infection Department, University of Ttraditional Chinese Affiliated to 81 Hospital, Nanjing 210000, China
    2. Infection Department, Bozhou People’s Hospital, Bozhou 236800, China
  • Received:2018-01-30 Published:2018-10-15
  • Corresponding author: Maorong Wang
  • About author:
    Corresponding author: Wang Maorong, Email:
引用本文:

褚萨萨, 尤娜, 汪茂荣. Siglecs家族在脓毒症中的研究进展[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(05): 417-421.

Sasa Chu, Na You, Maorong Wang. Progress on Siglecs in sepsis[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2018, 12(05): 417-421.

Siglecs家族是表达于免疫细胞表面的跨膜受体,在感染性疾病中发挥调节免疫平衡的作用。脓毒症是炎症诱导的器官功能障碍,其发病机理包括免疫调节紊乱、炎症反应以及凝血功能障碍等。本文主要就Siglecs家族在脓毒症发病机理中的作用进行综述。Siglec-1、Siglec-5和Siglec-14通过启动炎症反应和免疫反应发挥双向效应。Siglec-2通过调节B细胞和T细胞在脓毒症中调节免疫平衡。Siglec-9通过Toll样受体4(TLR4)的内吞作用调节巨噬细胞的极化现象,进而抑制中性粒细胞的作用。Siglec-10抑制危险相关分子模式(DAMP),帮助T细胞启动抗原抗体反应,减少B细胞数量从而减弱炎症反应。Siglecs在脓毒症不同阶段的功能具有潜在治疗意义。

Siglecs are cell surface transmenbrane receptor and are expressed on the immune cells, which regulated the immune balance in inflammation diseases. Sepsis is organ dysfunction induced by infection, the pathogenesis of sepsis contains the immune disorder, inflammatory reaction and coagulation dysregulation. In this article, we reviewed the role of Siglecs in the pathogenesis of sepsis was reviewed. Siglec-1, Siglec-5 and Siglec-14 play bidirectional role by regulating the inflammation and immunity. Siglec-2 modulates the immune balance in inflammation through regulating B cell and T cell response. Siglec-9 modulates macrophagepolarization and restrain the function of neutrophils during infection through the endocytosis of toll-like receptor 4 (TLR4). Siglec-10 inhibits the danger-associated molecular pattern (DAMP) and helps T cells initiate antigen-antibody responses, and reduces the number of B cells, thus reducing inflammation. Modulation of Siglecs function in different stages of sepsis have potential therapeutic significance in the treatment of sepsis.

[10]
Wu Y, Lan C, Ren D, et al. Induction of siglec-1 by endotoxin tolerance suppresses the innate immune response by promoting TGF-β1 production[J]. J Biol Chem,2016,291(23):12370-12382.
[11]
Sewald X, Ladinsky MS, Uchil PD, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection[J]. Science,2015,350(6260):563-567.
[12]
Walker JA, Smith KG. CD22: an inhibitory enigma[J]. Immunology, 2008,123(3):314-325.
[13]
Gjertsson I, Nitschke L, Tarkowski A. The role of B cell CD22 expression in Staphylococcus aureus arthritis and sepsis[J]. Microbes Infect,2004,6(4):377-382.
[14]
Jiang YN, Cai X, Zhou HM, et al. Diagnostic and prognostic roles of soluble CD22 in patients with Gram-negative bacterial sepsis[J]. Hepatobiliary Pancreat Dis Int,2015,14(5):523-529.
[15]
Jiang Y, Zhou H, Ma D, et al. MicroRNA-19a and CD22 comprise a feedback loop for B cell response in sepsis[J]. Med Sci Monit,2015,21:1548-1555.
[16]
Ma DY, Suthar MS, Kasahara S, et al. CD22 is required for protection against West Nile virus Infection[J]. J Virol,2013,87(6):3361-3375.
[17]
Nitschke L. Suppressing the antibody response with Siglec ligands[J]. N Engl J Med,2013,369(14):1373-1374.
[18]
Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. PhaseⅠtrial of recombinant immunotoxin RFB4 (dsFv)-PE38 (BL22) in patients with B-cell malignancies[J]. J Clin Oncol,2005,23(27):6719-6729.
[19]
Shao JY, Yin WW, Zhang QF, et al. Siglec-7 defines a highly functional natural killer cell subset and inhibits cell-mediated activities[J]. Scand J Immunol,2016,84(3):182-190.
[20]
Mizrahi S, Gibbs BF, Karra L, et al. Siglec-7 is an inhibitory receptor on human mast cells and basophils[J]. J Allergy Clin Immunol,2014,134(1):230-233.
[21]
Nguyen KA, Hamzeh-Cognasse H, Palle S, et al. Role of Siglec-7 in apoptosis in human platelets[J]. PLoS One,2014,9(9):e106239.
[22]
Grutkoski PS, Chen Y, Chung CS, et al. Sepsis-induced SOCS-3 expression is immunologically restricted to phagocytes[J]. J Leukoc Biol,2003,74(5):916-922.
[23]
Orr SJ, Morgan NM, Buick RJ, et al. SOCS3 targets Siglec 7 for proteasomal degradation and blocks Siglec 7-mediated responses[J]. J Biol Chem,2007,282(6):3418-3422.
[24]
Varchetta S, Brunetta E, Roberto A, et al. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes[J]. PLoS One,2012,7(9):e45821.
[25]
Siddiqui S, Schwarz F, Springer S, et al. Studies on the detection, expression, glycosylation, dimerization, and ligand binding properties of mouse Siglec-E[J]. J Biol Chem,2017,292(3):1029-1037.
[26]
Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases[J]. Int J Biol Sci,2014,10(5):520-529.
[27]
Liu YC, Yao FH, Chai YF, et al. Xuebijing injection promotes M2 polarization of macrophages and improves survival rate in septic mice[J]. Evid Based Complement Alternat Med,2015,2015:352642.
[28]
Higuchi H, Shoji T, Murase Y, et al. Siglec-9 modulated IL-4 responses in the macrophage cell line RAW264[J]. Biosci Biotechnol Biochem,2016,80(3):501-509.
[29]
Higuchi H, Shoji T, Iijima S, et al. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages[J]. Biosci Biotechnol Biochem,2016,80(6):1141-1148.
[30]
Chen GY, Brown NK, Wu W, et al. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1[J]. Elife,2014,3:e04066.
[31]
Boyd CR, Orr SJ, Spence S, et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production[J]. J Immunol, 2009,183(12):7703-7709.
[32]
Wu Y, Ren D, Chen GY. Siglec-E negatively regulates the activation of TLR4 by controlling its endocytosis[J]. J Immunol,2016,197(8): 3336-3347.
[33]
McMillan SJ, Sharma RS, Richards HE, et al. Siglec-E promotesβ2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung[J]. J Biol Chem,2014,289(29):20370-20376.
[34]
Aalto K, Autio A, Kiss EA, et al. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer[J]. Blood,2011,118(13):3725-3733.
[35]
Spence S, Greene MK, Fay F, et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation[J]. Sci Transl Med,2015,7(303):303ra140.
[36]
Chu S, Zhu X, You N, et al. The Fab fragment of a human anti-Siglec-9 monoclonal antibody suppresses LPS-induced inflammatory responses in human macrophages[J]. Front Immunol,2016,7:649-661.
[37]
Chen GY, Brown NK, Zheng P, et al. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity[J]. Glycobiology, 2014,24(9):800-806.
[38]
Stephenson HN, Mills DC, Jones H, et al. Pseudaminic acid onCampylobacter jejuniflagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction[J]. J Infect Dis,2014,210(9):1487-1498.
[39]
Chen W, Han C, Xie B, et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation[J]. Cell,2013,152(3):467-478.
[1]
Schauer R. Sialic acids as regulators of molecular and cellular interactions[J]. Curr Opin Struct Biol,2009,19(5):507-514.
[2]
Macauley MS, Crocker PR, Paulson JC.Siglec-mediated regulation of immune cell function in disease[J]. Nat Rev Immunol,2014,14(10):653-666.
[3]
Cao H, de Bono B, Belov K, et al. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region[J]. Immunogenetics,2009,61(5):401-417.
[40]
Parlato M, Souza-Fonseca-Guimaraes F, Philippart F, et al. CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis[J]. J Immunol,2014,192(5):2449-2459.
[41]
Chen GY, Tang J, Zheng P, et al. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses[J].Science, 2009,323(5922):1722-1725.
[42]
Chen GY, Chen X, King S, et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-Siglec-G interaction[J]. Nat Biotechnol,2011,29(5):428-435.
[43]
Paulson JC, Kawasaki N. Sialidase inhibitors DAMPen sepsis[J]. Nat Biotechnol,2011,29(5):406-407.
[44]
Ding Y, Guo Z, Liu Y, et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC classⅠ-peptide complex formation[J]. Nat Immunol,2016,17(10):1167-1175.
[45]
Bandala-Sanchez E, Zhang Y, Reinwald S, et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10[J]. Nat Immunol,2013,14(7):741-748.
[46]
Nitschke L. Siglec-G is a B-1 cell inhibitory receptor and also controls B cell tolerance[J]. Ann N Y Acad Sci,2015,1362:117-121.
[47]
Jellusova J, Düber S, Gückel E, et al. Siglec-G regulates B1 cell survival and selection[J]. J Immunol,2010,185(6):3277-3284.
[48]
Carlin AF, Chang YC, Areschoug T, et al. Group BStreptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5[J]. J Exp Med,2009,206(8):1691-1699.
[49]
Ali SR, Fong JJ, Carlin AF, et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group BStreptococcus[J]. J Exp Med,2014,211(6):1231-1242.
[50]
Angata T, Ishii T, Motegi T, et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation[J]. Cell Mol Life Sci,2013,70(17):3199-3210.
[51]
Wielgat P, Mroz RM, Stasiak-Barmuta A, et al. Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients[J].Adv Exp Med Biol,2015,839:1-5.
[4]
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016[J]. Crit Care Med,2017,45(3):486-552.
[5]
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA,2011,306(23):2594-2605.
[6]
Izquierdo-Useros N, Lorizate M, Contreras FX, et al. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1[J]. PLoS Biol,2012,10(4):e1001315.
[7]
Gummuluru S, Pina RNG, Akiyama H. CD169-dependent cell-associated HIV-1 transmission: a driver of virus dissemination[J]. J Infect Dis,2014,210 (Suppl 3):S641-S647.
[8]
Gupta P, Lai SM, Sheng J, et al. Tissue-resident CD169(+) macrophages form a crucial front line against plasmodium Infection[J]. Cell Rep,2016,16(6):1749-1761.
[9]
Shaabani N, Duhan V, Khairnar V, et al. CD169+macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection[J]. Cell Death Dis,2016,7(11):e2446.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[6] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[7] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[8] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[9] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[10] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[11] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[12] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
阅读次数
全文


摘要