切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (03) : 222 -227. doi: 10.3877/cma.j.issn.1674-1358.2017.03.004

基础论著

TOLL样受体信号转导通路在内质网应激致炎症反应中的作用
杨思园1, 李辉2, 李鑫2, 蒋荣猛2, 马成杰2, 魏红山3, 李兴旺2,()   
  1. 1. 100015 北京,北京大学地坛医院教学医院,北京大学医学部
    2. 100015 北京首都医科大学附属北京地坛医院感染性疾病诊治与研究中心
    3. 100015 北京首都医科大学附属北京地坛医院传染病研究所
  • 收稿日期:2016-03-16 出版日期:2017-06-15
  • 通信作者: 李兴旺
  • 基金资助:
    北京市医院管理局重点医学专业发展计划-肝炎专业(No. ZY201402)

Role of TOLL-like receptor signal transduction pathway in inflammatory reaction induced by endoplasmic reticulum stress

Siyuan Yang1, Hui Li2, Xin Li2, Rongmeng Jiang2, Chengjie Ma2, Hongshan Wei3, Xingwang Li2,()   

  1. 1. Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing 100015, China
    2. Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    3. Institute of Infection Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
  • Received:2016-03-16 Published:2017-06-15
  • Corresponding author: Xingwang Li
引用本文:

杨思园, 李辉, 李鑫, 蒋荣猛, 马成杰, 魏红山, 李兴旺. TOLL样受体信号转导通路在内质网应激致炎症反应中的作用[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(03): 222-227.

Siyuan Yang, Hui Li, Xin Li, Rongmeng Jiang, Chengjie Ma, Hongshan Wei, Xingwang Li. Role of TOLL-like receptor signal transduction pathway in inflammatory reaction induced by endoplasmic reticulum stress[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2017, 11(03): 222-227.

目的

探讨TOLL样受体信号转导通路在衣霉素(TM)致人肝癌细胞系HpeG2和人正常肝细胞系L02内质网应激及炎症反应过程中的作用。

方法

利用实时荧光定量PCR检测衣霉素作用后HepG2和L02细胞中细胞因子IRAK1、TAK1和NF-κB的基因表达水平,利用Western blot检测相应细胞因子的表达水平。

结果

两种细胞系经TM刺激后,内质网应激标志物GRP78蛋白表达增高;炎症反应标志因子NF-κB在基因水平和蛋白水平表达均呈现增高趋势;TOLL样受体信号转导通路中关键细胞因子IRAK1、TAK1在基因水平和蛋白水平表达呈现增高趋势,差异均具有统计学意义(P均< 0.05)。

结论

TM刺激HepG2和L02细胞系之后,可诱导出现内质网应激状态并引起细胞内的炎症反应;在内质网应激致炎症反应过程中伴TOLL样受体信号转导通路的激活,TOLL样受体信号转导通路对其发生、发展可能具有一定的调节作用。

Objective

To investigate the role of Toll-like receptor signal transduction pathway on the process of endoplasmic reticulum stress and inflammatory reaction induced by tunicamycin (TM).

Methods

The transcription levels of IRAK1, TAK1 and NF-κB genes in HepG2 and L02 cells treated by TM were detected by real-time reverse transcription PCR, and the expression level of protein related cytokines was detected by Western blot.

Results

The levels of GRP78 (marker of endoplasmic reticulum stress) in HepG2 cells and L02 cells significantly increased after treated by TM. The gene transcription and protein expression level of NF-κB (marker of inflammatory response) were both significantly increased in accordance with the concentration and action time compared with those untreated by TM. In Toll-like receptor signal transduction pathway, the expression of key cytokines like IRAK1 and TAK1 showed an increasing trend at gene and protein levels, all with significant differences (all P < 0.05).

Conclusions

After the stimulation of TM, endoplasmic reticulum stress and inflammatory reaction were induced in HepG2 and L02 cell lines. In the endoplasmic reticulum stress induced activation inflammatory reaction associated with Toll-like receptor signaling pathway, Toll-like receptor signal transduction pathway in the occurrence and development may have a regulatory role.

表1 引物序列
图1 HepG2和L02细胞经不同浓度、衣霉素处理不同时间后mRNA的表达
表2 各组细胞因子mRNA相对表达水平( ± s
图2 HepG2和L02细胞内GRP78表达
图3 HepG2和L02细胞内IRAK1、TAK1、pp65蛋白表达
表3 HepG2细胞系GRP78、IRAK1、TAK1和pp65蛋白相对表达水平( ± s
表4 L02细胞系GRP78、IRAK1、TAK1、pp65蛋白相对表达水平( ± s
[1]
Mohammad HA, Majidi J, Baradaran B, et al. Toll-Like receptors in the pathogenesis of autoimmune diseases[J]. Adv Pharm Bull,2015,5(Suppl 1):605-614.
[2]
Takeda K, Akira S. TLR signaling pathways[C]. Seminars In Immunology,2004:3-9.
[3]
Mcguire VA, Arthur JS. Subverting Toll-like receptor signaling by bacterial pathogens[J]. Front Immuno,2015,6(5):607.
[4]
Aalaei-andabili SH, Rezaei N. Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) and immune response against infection: a systematic review[J]. J Infection,2013,67(4):251-264.
[5]
Adolph T, Niederreiter L, Blumberg RS, et al. IBD is a disorder of defective autophagy and innate immunity: endoplasmic reticulum stress and inflammation[J]. Digest Dis,2012,30(4):341-346.
[6]
Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signaling and therapeutic targeting[J]. Biochem J,2011,434(2):181-188.
[7]
Cao SS, Luo KL, Shi L. Endoplasmic reticulum stress interacts with inflammation in human diseases[J]. J Cell Physiol,2016,231(2):288-294.
[8]
Sano R, Reed JC. ER stress-induced cell death mechanisms[J]. Biochim Biophys Acta,2013,1833(12):3460-3470.
[9]
Agrawal G, Subramani S. Emerging role of the endoplasmic reticulum in peroxisome biogenesis[J]. Front Physiol,2013,4:286.
[10]
Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response[J]. Nature,2008,454(7203):455-462.
[11]
Kitamura M. Control of NF-κB and Inflammation by the unfolded protein response[J]. Int Rev Immunol,2011,30(1):4-15.
[12]
Fung TS, Torres J, Liu DX. The emerging roles of viroporins in ER stress response and autophagy induction during virus infection[J]. Viruses,2015,7(6):2834-2857.
[13]
Zhang X, Zhang G, Zhang H, et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity[J]. Cell,2008,135(1):61-73.
[14]
Sanson M, Augé N, Vindis C, et al. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression[J]. Circ Res,2009,104(3):328-336.
[15]
Lin W, Popko B. Endoplasmic reticulum stress in disorders of myelinating cells[J]. Nat Neurosci,2009,12(4):379-385.
[16]
Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo[J]. Proc Natl Acad Sci USA,1994,91(8):3077-3081.
[17]
Park YJ, Yoo SA, Kim WU. Role of endoplasmic reticulum stress in rheumatoid arthritis pathogenesis[J]. J Korean Med Sci,2014,29(1):2-11.
[18]
Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases[J]. Naunyn Schmiedebergs Arch Pharmacol,2014,387(7):605-620.
[19]
Kato K, Tokuda H, Matsushima-Nishiwaki R, et al. AMPK limits IL-1-stimulated IL-6 synthesis in osteoblasts: involvement of IκB/NF-κB pathway[J]. Cell Signal,2012,24(8):1706-1712.
[20]
Cortez M, Carmo LS, Rogero MM, et al. A high-fat diet increases IL-1, IL-6, and TNF-α production by increasing NF-κB and attenuating PPAR-γ expression in bone marrow mesenchymal stem cells[J]. Inflammation,2013,36(2):379-386.
[21]
Sari AN, Korkmaz B, Serin MS, et al. Effects of 5, 14-HEDGE, a 20-HETE mimetic, on lipopolysaccharide-induced changes in MyD88/TAK1/IKKβ/IκB-α/NF-κB pathway and circulating miR-150, miR-223, and miR-297 levels in a rat model of septic shock[J]. Inflamm Res,2014,63(9):741-756.
[22]
Malhotra JD, Miao H, Zhang K, et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion[J]. Proc Natl Acad Sci USA,2008,105(47):18525-18530.
[23]
Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress[J]. Cell Death Differ,2012,19(11):1880-1891.
[24]
Bae EY, Lee SW, Seong S, et al. Inhibitory effects of verrucarin A on tunicamycin-induced ER stress in FaO rat liver cells[J]. Molecules,2015,20(5):8988-8996.
[25]
Zhao Y, Feng G, Wang Y, et al. A key mediator, PTX3, of IKK/IκB/NF-κB exacerbates human umbilical vein endothelial cell injury and dysfunction[J]. Int J Clin Exp Pathol,2014,7(11):7699-7707.
[26]
De Nardo D. Toll-like receptors: Activation, signalling and transcriptional modulation[J]. ICIS Awardee Reviews Cytokine,2015,74(2):181-189.
[1] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[2] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[3] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[4] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[5] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[8] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[9] 刁世童, 王伊帆, 董润, 彭劲民, 何淑华, 翁利, 杜斌. eSOFA,qSOFA,SIRS对于脓毒症患者预后预测价值的比较:一项基于非ICU住院患者的前瞻性队列研究[J]. 中华重症医学电子杂志, 2023, 09(02): 143-148.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[12] 何惠娴, 肖勇, 纪燕琴. 三角球囊与金属圆形节育器在中重度宫腔粘连术后患者中的应用比较[J]. 中华临床医师杂志(电子版), 2023, 17(02): 159-164.
[13] 郑慧媛, 马新春, 张英, 张玉梅. 克拉霉素联合鼻窦内窥镜手术对慢性鼻窦炎鼻息肉患者炎症反应和免疫功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 63-67.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 高海杰, 王宝军. TLR4信号通路与神经系统疾病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 61-65.
阅读次数
全文


摘要