[1] |
Liu C, Dong N, Huang X, et al. Emergence of the clinical rdar morphotype carbapenem-resistant and hypervirulent Klebsiella pneumoniae with enhanced adaption to hospital environment[J]. Sci Total Environ,2023,889:164302.
|
[2] |
Yang X, Dong N, Chan EW, et al. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae[J]. Trends Microbiol,2021,29(1):65-83.
|
[3] |
Li ZJ, Zhang HY, Ren LL, et al. Etiological and epidemiological features of acute respiratory infections in China[J]. Nat Commun,2021,12(1):5026.
|
[4] |
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options[J]. Antibiotics (Basel),2023,12(2):234.
|
[5] |
Pu D, Zhao J, Lu B, et al. Within-host resistance evolution of a fatal ST11 hypervirulent carbapenem-resistant Klebsiella pneumoniae[J].Int J Antimicrob Agents,2023,61(4):106747.
|
[6] |
Mukherjee S, Mitra S, Dutta S, et al. Neonatal sepsis: The impact of carbapenem-resistant and hypervirulent Klebsiella pneumoniae[J].Front Med (Lausanne),2021,8:634349.
|
[7] |
Yang X, Sun Q, Li J, et al. Molecular epidemiology of carbapenemresistant hypervirulent Klebsiella pneumoniae in China[J]. Emerg Microbes Infect,2022,11(1):841-849.
|
[8] |
Jin X, Chen Q, Shen F, et al. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin[J]. Emerg Microbes Infect,2021,10(1):1129-1136.
|
[9] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science,2017,356(6336):438-442.
|
[10] |
Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nat Protoc,2019,14(10):2986-3012.
|
[11] |
Kaminski MM, Abudayyeh OO, Gootenberg JS, et al. CRISPR-based diagnostics[J]. Nat Biomed Eng,2021,5(7):643-656.
|
[12] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J].Science,2018,360(6387):436-439.
|
[13] |
Dong D, Liu W, Li H, et al. Survey and rapid detection of Klebsiella pneumoniae in clinical samples targeting the rcsA gene in Beijing,China[J]. Front Microbiol,2015,6:519.
|
[14] |
Hartman LJ, Selby EB, Whitehouse CA, et al. Rapid real-time PCR assays for detection of Klebsiella pneumoniae with the rmpA or magA genes associated with the hypermucoviscosity phenotype: screening of nonhuman primates[J]. J Mol Diagn,2009,11(5):464-471.
|
[15] |
Huang Y, Li J, Wang Q, et al. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS[J]. J Microbiol Methods,2022,192:106385.
|
[16] |
Wang J, Xia C, Wu Y, et al. Rapid detection of carbapenem-resistant Klebsiella pneumoniae using machine learning and MALDI-TOF MS platform[J]. Infect Drug Resist,2022,15:3703-3710.
|
[17] |
Kurupati P, Chow C, Kumarasinghe G, et al. Rapid detection of Klebsiella pneumoniae from blood culture bottles by real-time PCR[J]. J Clin Microbiol,2004,42(3):1337-1340.
|
[18] |
Feng J, Cui X, Du B, et al. Detection and quantification of Klebsiella pneumoniae in fecal samples using digital droplet PCR in comparison with real-time PCR[J]. Microbiol Spectr,2023,11(4):e0424922.
|
[19] |
Qiu X, Liu X, Ma X, et al. One-pot isothermal LAMP-CRISPRbased assay for Klebsiella pneumoniae detection[J]. Microbiol Spectr,2022,10(4):e0154522.
|
[20] |
Tominaga T. Rapid detection of Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica and other related bacteria in food by lateral-flow test strip immunoassays[J]. J Microbiol Methods,2018,147:43-49.
|
[21] |
Eisenstein M. Seven technologies to watch in 2022[J].Nature,2022,601(7894):658-661.
|
[22] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science,2016,353(6299):f5573.
|
[23] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science,2018,360(6387):439-444.
|
[24] |
王俊文, 田原, 范子豪, 等. 基于规律成簇的间隔短回文重复序列及其相关蛋白技术检测乙型肝炎病毒共价闭合环状DNA方法的建立[J/CD].中华实验和临床感染病杂志(电子版),2022,16(5):320-327.
|
[25] |
Tan M, Liang L, Liao C, et al. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a[J]. Front Cell Infect Microbiol,2024,14:1362513.
|
[26] |
Liu Y, Xu H, Liu C, et al. CRISPR-Cas13a nanomachine based simple technology for avian influenza A (H7N9) virus on-site detection[J]. J Biomed Nanotechnol,2019,15(4):790-798.
|
[27] |
Zou Y, Mason MG, Wang Y, et al. Nucleic acid purification from plants, animals, and microbes in under 30 seconds[J]. PLoS Biol,2017,15(11):e2003916.
|
[28] |
Wang Y, Ke Y, Liu W, et al. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level[J]. ACS Sens,2020,5(5):1427-1435.
|