切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 7 -10. doi: 10.3877/cma.j.issn.1674-1358.2024.01.002

综述

慢性乙型肝炎新型免疫治疗研究进展
陈观梅1, 左璇1, 廖宝林1,()   
  1. 1. 510440 广州市,广州医科大学附属市八医院广州市传染病临床研究所肝病中心
  • 收稿日期:2023-10-10 出版日期:2024-02-15
  • 通信作者: 廖宝林
  • 基金资助:
    广州市科技计划市校(院)联合资助项目(No. 202201020250、2023A03J0796)

Recent progress on novel immunotherapy in the treatment of chronic hepatitis B

Guanmei Chen1, Xuan Zuo1, Baolin Liao1,()   

  1. 1. Guangzhou Medical Research Institute of Infectious Diseases, Department of Hepatology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
  • Received:2023-10-10 Published:2024-02-15
  • Corresponding author: Baolin Liao
引用本文:

陈观梅, 左璇, 廖宝林. 慢性乙型肝炎新型免疫治疗研究进展[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 7-10.

Guanmei Chen, Xuan Zuo, Baolin Liao. Recent progress on novel immunotherapy in the treatment of chronic hepatitis B[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2024, 18(01): 7-10.

慢性乙型肝炎(CHB)仍然是世界公共卫生问题之一,其持续进展可引起肝硬化和肝细胞癌(HCC),甚至最终导致死亡。目前抗病毒药物能够抑制乙型肝炎病毒(HBV)DNA复制并减少肝脏炎症,可以逆转肝纤维化及降低肝硬化、HCC的风险,但仍难以实现CHB的完全治愈,并且停止治疗后常出现复发。免疫治疗能够打破CHB患者对HBV的免疫耐受及恢复对HBV的免疫应答,有效的免疫治疗策略配合抗病毒药物有望实现CHB的治愈。

Chronic hepatitis B (CHB) is still a public healthy problem all over the world, its consistent development can cause liver cirrhosis, hepatocellular carcinoma (HCC) and even death. At present, antiviral drugs can repress the replication of hepatitis B virus (HBV) DNA, reduce liver inflammation, reverse liver fibrosis and decreased the risk of cirrhosis and HCC. But it is still difficult to completely cure CHB, and the recurrence of virus is common after termination of treatment. Immunotherapy can break the immune tolerance and restore their immune response to HBV in CHB patients, and effective strategies of immunotherapy combined with direct antiviral drugs are expected to achieve the cure of CHB.

[1]
Jeng W, Lok AS. What will it take to cure hepatitis B?[J]. Hepatol Commun,2023,7(4):e84.
[2]
Chang J, Block TM, Guo J. The innate immune response to hepatitis B virus infection: Implications for pathogenesis and therapy[J]. Antiviral Res,2012,96(3):405-413.
[3]
Li Q, Sun B, Zhuo Y, et al. Interferon and interferon-stimulated genes in HBV treatment[J]. Front Immunol,2022,13(1):1034968.
[4]
Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses[J]. Annu Rev Immunol,2014,32(10):513-545.
[5]
Yang G, Wan P, Zhang Y, et al. Innate Immunity, Inflammation, and Intervention in HBV Infection[J]. Viruses,2022,14(10):2275.
[6]
Han Q, Zhang C, Zhang J, et al. The role of innate immunity in HBV infection[J]. Semin Immunopathol,2013,35(1):23-38.
[7]
Du Y, Wu J, Liu J, et al. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection[J]. Front Immunol,2022,13:965018.
[8]
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol,2022,13:812774.
[9]
Yuen M, Balabanska R, Cottreel E, et al. TLR7 agonist RO7020531 versus placebo in healthy volunteers and patients with chronic hepatitis B virus infection: a randomised, observer-blind, placebo-controlled, phase 1 trial[J]. Lancet Infect Dis,2023,23(4):496-507.
[10]
Amin OE, Colbeck EJ, Daffis S, et al. Therapeutic potential of TLR8 agonist GS‐9688 (selgantolimod) in chronic hepatitis B: remodeling of antiviral and regulatory mediators[J]. Hepatology,2021,74(1):55-71.
[11]
Gane EJ, Kim HJ, Visvanathan K, et al. Safety, pharmacokinetics, and pharmacodynamics of the oral TLR8 agonist selgantolimod in chronic hepatitis B[J]. Hepatology,2021,74(4):1737-1749.
[12]
Reyes M, Lutz JD, Lau AH, et al. Safety, Pharmacokinetics and pharmacodynamics of selgantolimod, an oral Toll-like receptor 8 agonist: A phase Ⅰa study in healthy subjects[J]. Antivir Ther,2020,25(3):171-180.
[13]
Vajjhala PR, Ve T, Bentham A, et al. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways[J]. Mol Immunol,2017,86:23-37.
[14]
Nahavandi-Parizi P, Kariminik A, Montazeri M. Retinoic acid-inducible gene 1 (RIG-1) and IFN-β promoter stimulator-1 (IPS-1) significantly down-regulated in the severe coronavirus disease 2019 (COVID-19)[J]. Mol Biol Rep,2023,50(1):907-911.
[15]
Yuen M, Chen C, Liu C, et al. A phase 2, open-label, randomized, multiple-dose study evaluating Inarigivir in treatment-naïve patients with chronic hepatitis B[J]. Liver Int,2023,43(1):77-89.
[16]
Agarwal K, Afdhal N, Coffin C, et al. LBP04--Liver toxicity in the phase 2 catalyst 206 trial of Inarigivir 400 mg daily added to a nucleoside in HBV EAg negative patients[J]. J Hepatol,2020,73:S125.
[17]
Kuipery A, Gehring AJ, Isogawa M. Mechanisms of HBV immune evasion[J]. Antiviral Res,2020,179:104816.
[18]
Markham A. Envafolimab: First approval[J]. Drugs,2022,82(2):235-240.
[19]
Zhang F, Wei H, Wang X, et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade[J]. Cell Discov,2017, 3(1):17004.
[20]
Gane E, Verdon DJ, Brooks AE, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study[J]. J Hepatol,2019, 71(5):900-907.
[21]
Wu T, Stevens S, Liu C, et al. Discovery of oral PDL1 small molecule inhibitors specifically designed for the treatment of chronic hepatitis B[J]. J Hepatol,2022,77:S853.
[22]
Wang G, Qian J, Cui Y, et al. A phase Ⅱa trial of subcutaneously administered PD-L1 antibody ASC22 (Envafolimab) in patients with chronic hepatitis B[J]. 2021.Oral abstracts 91.
[23]
Meng Z, Chen Y, Lu M. Advances in Targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection[J]. Front Immunol,2020,10:3127.
[24]
Kruse RL, Shum T, Tashiro H, et al. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice[J]. Cytotherapy,2018,20(5):697-705.
[25]
Guo G, He W, Zhou Z, et al. PreS1-targeting chimeric antigen receptor T cells diminish HBV infection in liver humanized FRG mice[J]. Virology,2023,586:23-34.
[26]
Ebert G, Allison C, Preston S, et al. Eliminating hepatitis B by antagonizing cellular inhibitors of apoptosis[J]. PANS,2015,112(18): 803-5808.
[27]
Liu H, Hou J, Zhang X. Targeting cIAPs, a new option for functional cure of chronic hepatitis B infection?[J]. Virol Sin,2018,33(5):459-461.
[28]
Al Mahtab M, Akbar SMF, Yoshida O, et al. Antiviral response across genotypes after treatment of chronic hepatitis B patients with the therapeutic vaccine NASVAC or pegylated interferon[J]. Vaccines (Basel),2023,11(5):962.
[29]
Al Mahtab M, Akbar SMF, Aguilar JC, et al. Treatment of chronic hepatitis B naïve patients with a therapeutic vaccine containing HBs and HBc antigens (a randomized, open and treatment controlled phase Ⅲ clinical trial)[J]. PLoS One,2018,13(8):e201236.
[30]
Yoshida O, Akbar S, Imai Y, et al. Intranasal therapeutic vaccine containing HBsAg and HBcAg for patients with chronic hepatitis B; 18 months follow-up results of phase IIa clinical study[J]. Hepatol Res,2023,53(3):196-207.
[31]
Al-Mahtab M, Akbar SMF, Aguilar JC, et al. Safety profile, antiviral capacity, and liver protection of a nasal therapeutic vaccine in patients with chronic hepatitis B: Five-year-follow-up outcomes after the end of treatment[J]. Front Med,2023,10:1032531.
[32]
Wei L, Zhao T, Zhang J, et al. Efficacy and safety of a nanoparticle therapeutic vaccine in patients with chronic hepatitis B: A randomized clinical trial[J]. Hepatology,2022,75(1):182-195.
[33]
Su J, Brunner L, Ates Oz E, et al. Activation of CD4 T cells during prime immunization determines the success of a therapeutic hepatitis B vaccine in HBV-carrier mouse models[J]. J Hepatol,2023,78(4):717-730.
[34]
Kosinska AD, Festag J, Mück-Häusl M, et al. Immunogenicity and antiviral response of therapeutic hepatitis B vaccination in a mouse model of HBeAg-negative, persistent HBV infection[J]. Vaccines,2021,9(8):841.
[35]
Bunse T, Kosinska AD, Michler T, et al. PD-L1 silencing in liver using siRNAs enhances efficacy of therapeutic vaccination for chronic hepatitis B[J]. Biomolecules,2022,12(3):470.
[1] 尚峰进, 陈陆尧, 刘亚星, 张浩然, 连长红. 肿瘤相关中性粒细胞在胃癌发生发展和治疗中的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(01): 58-61.
[2] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[3] 黄艺承, 梁海祺, 何其焕, 韦发烨, 杨舒博, 谭舒婷, 翟高强, 程继文. 机器学习模型评估RAS亚家族基因对膀胱癌免疫治疗的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 131-140.
[4] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[5] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[6] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[7] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[8] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[9] 张宇, 余灵祥, 杨永平, 赵德希, 刁广浩, 杨木易, 赵亮, 刘佳, 李鹏, 张宁, 任辉. 原发性肝癌Ⅲa期降期后肝切除临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 78-82.
[10] 严帅, 岳志强, 赵江华, 陈琳, 吴金柱. 初始不可切除肝癌患者靶向免疫联合治疗后手术切除临床疗效[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 83-87.
[11] 卓长华, 叶韵斌, 陈昌江, 简锦亮, 王志纬. 林奇综合征相关性异时性结直肠癌的治疗[J]. 中华结直肠疾病电子杂志, 2024, 13(01): 32-37.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 吕泉龙, 史文杰, 孙文国. 免疫检查点抑制剂在治疗转移性去势抵抗性前列腺癌中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(01): 69-72.
阅读次数
全文


摘要