[1] |
Zhong N,Zheng B,Li Y, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003[J]. Lancet,2003,362(9393):1353-1358.
|
[2] |
Wang JT,Chang SC. Severe acute respiratory syndrome[J]. Curr Opin Infect Dis,2004,17(2):143-148.
|
[3] |
Ksiazek T. A novel coronavirus associated with severe acute respiratory syndrome[J]. N Engl J Med,2003,348(20):1953-1966.
|
[4] |
Drosten C,Günther S,Presier W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome[J]. N Engl J Med,2003,348(20):1967-1976.
|
[5] |
Li W,Moore MJ,Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature (London), 2003,426(6965):450-454.
|
[6] |
Xu L,Zhang Y,Liu Y, et al. Angiotensin-converting enzyme 2 (ACE2) from raccoon dog can serve as an efficient receptor for the spike protein of severe acute respiratory syndrome coronavirus[J]. J Gen Virol,2009,90(11):2695-2703.
|
[7] |
Cui J,Li F,Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol,2019,17(3):181-192.
|
[8] |
Menachery VD,Yount BL,Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence[J]. Nat. Med,2015,21(12):1508-1513.
|
[9] |
Tong S,Conrardy C,Ruone S, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya[J]. Emerg Infect Dis,2009,15(3):482-485.
|
[10] |
Yang XL,Hu B,Wang B, et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus[J]. J Virol,2016,90(6):3253-3256.
|
[11] |
Lau SKP,Woo PCY,Li KSM, et al. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A[J]. J Virol,2015,89(6):3076- 3092.
|
[12] |
Ge XY,Li JL,Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor[J]. Nature,2013,503(7477):535-538.
|
[13] |
Li F. Structure, function, and evolution of coronavirus spike proteins[J]. Annu Rev Virol,2016,3(1):237-261.
|
[14] |
Hulswit RJ,de Haan CA,Bosch BJ. Coronavirus spike protein and tropism changes[J]. Adv Virus Res,2016,96:29-57.
|
[15] |
Li F. Receptor recognition and cross-species infections of SARS coronavirus[J]. Antiviral Res,2013,100(1):246-254.
|
[16] |
Millet JK,Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res,2015,202(1):120-134.
|
[17] |
Millet JK,Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells[J]. Virology,2018,517:3-8.
|
[18] |
Iwata-Yoshikawa N,Okamura T,Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection[J]. J Virol,2019,93(6):e01815-18.
|
[19] |
Shirato K,Kawase M,Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry[J]. Virology,2018,517(1):9-15.
|
[20] |
Shen LW,Mao HJ,Wu YL, et al. TMPRSS2 A potential target for treatment of influenza virus and coronavirus infections[J]. Biochimie,2017,142(1):1-10.
|
[21] |
Kawase M,Shirato K,Van d HL, et al. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry[J]. J Virol,2012,86(12):6537-6545.
|
[22] |
Huang IC,Bailey CC,Weyer JL, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus[J]. PLoS Pathog,2011,7(1):e1001258.
|
[23] |
龚震宇,龚训良. 21世纪新发和再发传染病的威胁[J]. 疾病监测,2016,31(7):618-620.
|
[24] |
De Wit E,van Doremalen N,Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses[J]. Nat Rev Microbiol,2016,14(8):523-534.
|
[25] |
Hui DS. Tracking the transmission and evolution of MERS-CoV[J]. Lancet,2013,382(9909):1962-1964.
|
[26] |
Su S,Gu M,Liu D, et al. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China[J]. Trends Microbiol,2017,25(9):713-728.
|
[27] |
Merens A,Bigaillon C,Delaune D. Ebola virus disease: Biological and diagnostic evolution from 2014 to 2017[J]. Med Mal Infect,2018,48(2):83-94.
|
[28] |
Paden CR,Yusof M,Al Hammadi ZM, et al. Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE[J]. Zoonoses Public Health,2018,65(3):322-333.
|
[29] |
Ben H,Zeng LP,Yang XY, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus[J]. PLoS Pathog,2017,13(11):e1006698.
|
[30] |
Menachery VD,Yount BL,Sims AC, et al. SARS-like WIV1-CoV poised for human emergence[J]. Proc Nat Acad Sci USA,2016,113(11):3048-3053.
|
[31] |
Lau SKP,Feng Y,Chen H, et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination[J]. J Virol,2015,89(20):10532-10547.
|
[32] |
Wu Z,Yang L,Ren X, et al. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus[J]. J Infect Dis,2016,213(4):579-583.
|
[33] |
田明明,魏雪玲,杨兴, 等. 云南新现蝙蝠SARS样冠状病毒密码子偏性及其聚类分析[J]. 中国人兽共患病学报,2018,34(12):1079-1086.
|